Title: 461191 Discrete Math Lecture 9: Relations
1461191 Discrete MathLecture 9 Relations
- San Ratanasanya
- CS, KMUTNB
Adpated from Dr. Goanchanart, RSU
2Todays topics
- Review of Recurrence Relations
- Administrivia
- Relations
- Properties of Relations
- n-ary Relations
- Representing Relations
- Closures of Relations
- Equivalence Relations
- Partial Orderings
2
3Recurrence Relations
- Recurrence relation ?????? ????? an
??????????????? an ???????????????????????????????
?????????? ?????? n n0 ??? n0 ???? Nonnegative
Integer ???????????????????????????????????
(Solution) ??? relation ??????????
??????????????????????????????????????????? - Relation ???? unique solution ????????????????????
initial condition - ???????????????????????????????????????????
Recurrence Relation ???
4Examples
- ??????????????????????????????? 1 ??? ??? 5 ???
???? recurrence relation ?????????????????????????
?? ?????????????????????????????????? - ??? Pn ?????????????????????? n ???
- P1 1, P2 1, P3 1, P4 1, P5 2
- P6 3, P7 4, P8 5, .
- ?????????? P6 3 2 1, P7 4 3 1, P8 5
4 1, - Pn Pn-1 Pn-5
5Solving Linear Recurrence Relations
- ????????????????????? Recurrence relation
?????????????????????????? recursive ???
??????????????????????????????????????????????????
????????? n - ?????????????????????????? ?????????????????????
????????????????????????????????????????? (Linear
equation) - ??????????????????????????????? 2 ?????? ???
- Homogeneous
- Non-Homogeneous
6Examples
- ????????????????????????????????? an an-1
2an-2, a0 2, a1 7 - ??? r2 r 2 0, r1 2, r2 -1
- ??????? an a12n a2(-1)n
- ????????? initial condition ?????????????????????
a1 3 ??? a2 -1 - ??????????? an 32n -(-1)n
7Generating Functions
- ????????????????? (Generating Function)
??????????????????????????? Power Series - ???????????
- ?????????? Explicit Formula ??? Recurrence
Relation - ???
8Examples
- ??????????????? recurrence relation ak 3ak-1
?????? k 1,2,3 ????? initial condition a0 2 - ??? G(x) ???? generating function ??? ak
??????? - ?????????
- ?? G(x) ??? xG(x) ????????? recurrence relation
???????? - ???? G(x) 3xG(x) (1-3x)G(x) 2 ??????? G(x)
2/(1-3x) ??? - ?????
- ???????
9Divide-and-Conquer and Recurrence Relations
- ???????? Recursive Algorithm ???????????????? n
????????????????? ????? a ????????????????????????
??????? n/b ?????? n ???b ????????????????????????
????????????????????????????? g(n)
?????????????????????? - ????????????????????????????????? Divide
(???????) ?????????????????????????????
??????????????????????????????????????????????
??????????????????????????????????????????????????
????? ????????????????????????????????????????????
??????????????????????????????????????????????????
Conquer (????????) - ???????? f(n) ????????????????????????????????????
???????? n ???????? f(n) ???????????????
Recurrence Relation ?????? - f(n) af(n/b) g(n)
- ??????????????????? Divide-and-Conquer Recurrence
Relation - ???????????? Master Theorem ??????????????????????
?????? algorithm ????????????
10Example
- ??? f(n) f(n/3) 1 ????? n ??? 3 ????? ??? f(1)
1 ???? f(27) - f(27) f(9) 1 f(3) 2 f(1) 3 4
11Inclusion-Exclusion
12Example
- ????????????????????????????????? 200 ????
Principle of Inclusion-Exclusion -
- 40
13Administrivia
- Midterm Exam
- Statistic Summary
- n S1S2-MA 20421-2481-3 93
- Max ??
- Mean ??
- Min 6
- Standard Deviation ??
- Homework 1-6 and Programming Assignment 1 due
today - Programming Assignment 2 dues next week
Sorry, I cannot finish grading it by today
13
14Doubts in Midterm Exam
- 10. ??????????????????????????????????????????????
1, 2, 3 ???????? 1 ???????? 3 - ???????? 1 ???????? 3 ??????????? 1 ??? 3
?????????? ????? 1 ????????????? - ????? 1 ???????? 3 ????????????????? 1
?????????????? 3 ????? 1 ???????????????????? - 16. ????????????????????????????
??????????????????????????????? 50 ???
????????????????????? 10 ???? ??????????? 85 ????
??????????????????????????????????????????????????
???????????????????????? ?????????????????????????
?????????????? 2 ?????????????????????? - ???????? ????????????????????? 2
????????????????????... ?????????????????????????
???????? 2? - ????? ?????????? pigeonhole ?N/k? 2 ????? k
??????????????? N ???????????????????????????
???????? N k 1
15Doubts in Midterm Exam
- 18. ??????????.???????? 3 ??? ?????? 2 ??? ???
????? 2 ??? ?????.????????????? 1 ???? ??????
1??? ???????????????????????????????????? - ???????? ?????????????????????????
??????????????????????????????????? - ????? ???????????????????????? r ?????????????
?????????????????????????????????
???????????????????????????????????????????? - 19. ???????????????? CS ?????????????????????
????????????????????????????????????????? 40
??????????????????????????????? 10 ??
??????????????????????????????????????????????????
????? - ???????? ????????????????????????????????????
????????????????????????? - ????? ???????????????????????????????????????????
?????????? ?????????????????????????????????
????????????????????????
16Relations
- ????????
- A ??????????????????
- B ?????????????????
- R ????????????????????? (a,b) ???????????
???????? a ?????????????????? b - ????? ?????????????????? CS01
- (?????, CS01)
- ??????? ?????????????????? CS02
- (???????, CS02)
- ???????? ?????????????????? CS01
- (????????, CS01)
17Relations
- ????????
- A ????????????????????????????
- B ??????????????????
- R ?????????????????????????????????????? (a,b)
????? a ????????? b - ???????????? (a,b) ????????? R
18Relations
- Relations (????????????) ????????????????
??????????????????????????? set
??????????????????????????????????????????????????
????????? ???? ??????????????????
??????????????????????????????????? ??????? - Binary Relation ??????????????????????? Set 2 set
- ????? Relation ?????????????????? Binary Relation
- n-ary Relation ??????????????????? set ??????????
2 set - Ordered Pair ?????????????????????????????????????
?? Set 2 set ?????????????????? ????????????
subset ???????? Cartesian ??????? 2 set ??????? - ??????????????? a R b ??? relation R ??? a ?? b
??? a R b ??????? a ??? b ????? relation R ?????? - ??????? a R b ??????? (a,b) ?R ???? a ????????
(related) ??? b ??? R
Definition 1 ??? A ??? B ???? Set
???????? Binary Relation ??? A ?? B ???? subset
??? A x B
Definition 2 Relation ?? Set A ??? Relation ???
A ?? A ??????????? Subset ??? A x A
/
18
19Examples
- A 0, 1
- B a, b
- A x B
- (0,a), (0,b), (1,a), (1,b)
- R1 (0,a), (0,b)
- R2 (0,a), (1,a)
- R3 (0,b), (1,a), (1,b)
- R4 (0,a), (0,b), (1,a), (1,b)
- ?????????????????????? relation ??? A ????? B
20Examples
- ??? A 0, 1, 2 ??? B a, b ???? (0,a),
(0,b), (1,a), (2,b) ???? relation ??? A ?? B - ??? A 1, 2, 3, 4 ???? Ordered pair ?????????
Relation R (a, b) a divides b - R (1, 1), (1, 2), (1, 3), (1, 4), (2, 2),
(2,4), (3,
3), (4, 4)
???????????????????? ?????????????????????????
21Example
- ?????????????????????????
- R1 (a,b) a b
- R2 (a,b) a gt b
- R3 (a,b) a b or a -b
- R4 (a,b) a b
- R5 (a,b) a b 1
- R6 (a,b) a b 3
- ????????????????????????????????????
- (1,1)
- (1,2)
- (2,1)
- (1, -1)
- (2,2)
22Properties of Relations
- R ????????????????? (Reflexive) ??? a R a
?????????? a ?? A - R ????????????????? (Symmetric) ??? a R b
????????? b R a - R ???????????????????? (Anti-symmetric) ??? a R b
??? b R a ????????? a b - R ?????????????????? (Transitive) ??? a R b ??? b
R c ????????? a R c - ?? Definition 3-5 ?? section 8.1
22
23Examples
- Relation ?? 1,2,3,4 ?????????? ???? reflexive,
symmetric, antisymmetric, ??? transitive ????????
? - R1 (1,1), (1,2), (2,1), (2,2), (3,4), (4,1),
(4,4) - R2 (1,1), (1,2), (2,1)
- R3 (1,1), (1,2), (1,4), (2,1), (2,2), (3,3),
(4,1), (4,4) - R4 (2,1), (3,1), (3,2), (4,1), (4,2), (4,3)
- R5 (1,1), (1,2), (1,3), (1,4), (2,2), (2,3),
(2,4), (3,3), (3,4), (4,4) - R6 (3,4)
- Reflexive R3, R5
- Symmetric R2, R3
- Antisymmetric R4, R5, R6
- Transitive R4, R5, R6
23
24More on Relations
- ????????????????????????? Set ????????????????????
?? Set Operations ??? Relations ??? - Functions ??????????????????????????? ???????
Functions ??????? subset ??? Relations - Composite Relation ???? ??????????????????
???????????? S?R ?????????????????????????????????
???? a R b ??? b S c ??????? a S?R c (??
Definition 6, Sec. 8.1) - Power ??? Relation (Rn) ??????????????????????????
??????????????????? R ????? n ?????
????????????????????????????? Recursive ?????????
(?? Definition 7, Sec. 8.1) - R1 R, Rn1 Rn?R, n 1, 2, 3,
25????????????????????????????????
Relation
Function
?
?
One-to-one
?
?
One-to-many
?
?
Many-to-one
26Examples
- ??? A 1,2,3 ??? B 1,2,3,4 ????? Relation
R1 (1,1), (2,2), (3,3) ??? R2 (1,1),
(1,2), (1,3), (1,4) ???? - R1 ? R2
- R1 ? R2
- R1 - R2
- R2 R1
- ???? Composite ??? R ??? S ?????? R ???? relation
??? 1,2,3 ????? 1,2,3,4 ?????? R (1,1),
(1,4), (2,3), (3,1), (3,4) ??? S ???? relation
??? 1,2,3,4 ????? 0,1,2 ?????? S (1,0),
(2,0), (3,1), (3,2), (4,1) - S?R (1,0), (1,1), (2,1), (2,2), (3,0), (3,1)
(1,1), (1,2), (1,3), (1,4), (2,2), (3,3)
(1,1)
(2,2), (3,3)
(1,2), (1,3), (1,4)
26
27Example
- ??? R (1,1), (2,1), (3,2), (4,3) ???? Rn
- R2 R?R (1,1), (2,1), (3,1), (4,2)
- R3 R2?R (1,1), (2,1), (3,1), (4,1)
- R4 R3?R (1,1), (2,1), (3,1), (4,1)
- Rn R3, n 3, 4, 5,
28???????? Relations ?? Set ??????????? n ???
- ??? set A ???????? n ???.
- ?????????????? set A ??? subset ??? A x A.
- ???? A x A ????????????? n2 ???.
- Set ??????????? m ??????? 2m subset.
- ??????? A x A ???? subset ??????? 2n2.
- ???????????? 2n2 relations ?? set ??????????? n
???. - Example
- set a, b, c ???????? 232 29 512
relations.
29Example
- ???? Reflexive relation ??????????? set
??????????? n ??? - Reflexive ??? (a, a) ?R ?????????? Product rule
???? n(n-1) ordered pair - ??????????????? Relations ?????????? 2n(n-1) ???
30n-ary Relations and its applications
- ??????????????????????? set ?????????? 2 set
?????? ????????????????????? - ???? ????????. ??????????????????????? ??. ??????
???????????????????, ???????????????
???????????????????? ???????? ??????
?????????????????????????????? ??????? - ??? A1, A2, , An ???? set ???? n-ary Relation ??
set ?????????????? subset ??? A1?A2??An
?????? A1, A2, , An ???? Domain ??? Relation ???
n ?????? degree (?? Definition 1, Sec. 8.2) - Example ??? R ???? relation ?? N?N?N ??????????
triple (a, b, c) ?????? a lt b lt c ??????? (1, 2,
3)?R ??? (2, 4, 3)?R ?????? Degree ?????? 3 ???
Domain ??? N
30
31Database and Relations
- ??????????????????????????????????????????????????
?????????? - ?????????????????????????????????????????????????
- ??????????????????????????????????? ????????????
?? ????? ?????? ??????????????????????????????????
??????????????????????? - ?????????????????????????????????????????????????
- ??????????????????????????????????????????????????
??????????????????????????? ???? Relational Data
Model (RDM) ??????????????? IBM ????????????????? - ??????????????????????????????????????????????????
????? Relational DataBase Management System ????
RDBMS - ???????????????????????????????????????????????
SQL ???? SEQUEL ???????????? Structured English
Query Language - ????????????????????????????????????? ????
Oracle, MS Access, mySQL ???????
32Relational Database
- ?????????? record (???????) ???????? n-tuples
??????????????? fields ???? ???????????? ????
?????? - ???? ?????????. ???? record ??????????????????????
?????????. ???? ???? ??????? ??????. ???????? GPA
??????? - ?? RDM ??????????? record ??????????????????????
n-ary relation - ?????????????????????????? ????? (Table)
????????????????????????????????????
??????????????????????????? Table
33Relational Database
??????????????????????????????????????????????
- Primary key ??? Domain (???? Field)
???????????????? n-tuple ?? Table ??? - ???????????? Domain ????????????? Primary key ???
????????????????????????? n-ary relation
??????????????????????????????????????? ??
???????????????????????? ???????? Table - Composite key ??? Cartesian product ??? Domain
???????????? ?????????? n-tuple ?????????? - ???? Domain ??? Student_Name ??? Major
34Operations on n-ary Relations
- ????????????????????????????????? RDB
??????????????????????? ??????????????????????????
????????????????????????????? - ????????????????? ?????????????????????????
Condition ??? ???????? ???????????????? n-tuple
??????????????? Relation ???? ???? Selection
Operator ??????? map n-ary ?? Relation ?????
n-tuple ????????????? Condition ??????? - ?????????????????????????????????????? ???
Projection ?????? map ??? n-tuple ?????? m-tuple - ???????????? Table ?????????????????? Join
???????? Table ???????????????????????????????????
???? - ?? Definiton 2-4 ?? Sec 8.2
35Operations on n-ary Relations
Definition 2 ??? R ???? n-ary Relation ??? C
???? Condition ??? Element ?? R ??????????
??????? selection operator (Sc) ??????? Map ???
n-ary Relation ?? R ????? n-ary Relation
????????????????? n-Tuple ??? R ????????????
Condition C
Definition 3 Projection Pi1i2,,im ?? Map ???
n-tuple (a1, a2, , an)????? m-tuple (a1, a2, ,
am) ?????? m ? n
Definition 4 ??? R ???? Relation ????? Degree m
??? S ???? Relation ????? Degree n ??? Join
Jp(R, S) ?????? p ? m ??? p ? n ???? Relation
????? Degree m n - p ??????????????????? (m n
p)-tuple (a1, a2, , am-p, c1, c2, , cp, b1,
b2, , bn-p) ?????? m-tuple (a1, a2, , am-p, c1,
c2, , cp) ????? R ??? n-tuple (c1, c2, , cp,
b1, b2, , bn-p) ????? S
36Examples
- ????????? C1 (Major Computer Science ? GPA
gt 3.5) ???????????????? n-ary Relation ?? Table 1
???????????????????? - ??? 4-tuple ??????????? (Ackermann, 231455,
Computer Science, 3.88) - ?????? Projection P1,3 ??? 4-tuples (2,3,0,4),
(Jane Doe, 234111001, Geogrpahy, 3.14), (a1, a2,
a3, a4) ???????????????????????? - ??? (2,0), (23411101, Geography), (a1, a3)
- ??????????????????? Projection P1,4 ??? Table 1
??????? - ??????????? Join Table 5 ??? 6 ???????????????????
????
37Example
38SQL Examples
SELECT Departure_Time FROM Flights WHERE
Destination Detroit
- Select ?? SQL ??????? Projection
- ????????????? Database ??? SQL ????????????? ??.
????? ??????????? Database
SELECT Professor, Time FROM Teaching_assignments,
Class_schedule WHERE Department Mathematics
(Rosen, 300 P.M.)
39??????????????????? (Representing Relations)
- ?????????????????????????????????????? ????
Ordered pair ??????????????????????????????? - ??????????? ????????????????????????????????????
Zero-One Martix ??? Directed Graph
????????????????????? - ??????????? Zero-One Matrix ??????????????????????
????????????????????????? - Directed Graph ???????????????????????????????????
?????????????????????????????????????
39
40Representing Relations Using Matrices
- Relation ??????? Finite Set ?????????????????
Zero-One Matrix ????????? R ???? Relation ??? A
????? B ?????? Element ?? A ???B
?????????????????????????? ???????????????????????
??? ??????? Relation R ????????????????? Matrix
MR mij ?????? - ??????? ??? Element ?? Matrix ??? Row ???
Column ij ??????????? ????? ??? ai
????????????????? bj ?????????? R
?????????????????????????? ????? - Example ????? A 1,2,3, B 1,2 ??? R ????
relation ??? A ?? B ?????? R (a,b) a?A ? b?B
? a gt b ???? Matrix ??????? R ???????? ?????? a1
1, a2 2, a3 3, b1 1, b2 2 - ???????? R (2,1), (3,1), (3,2) ???????
40
41Representing Relations Using Matrices
- Matrix ??????? Relation ?? Set ???????????????????
???????? Relation ????????? - Relation R ?? A ?????? Reflexive ?????????? mii
1 ???????? ?????????????????????????? ??? Matrix
??????? R ???? ????????? 1 ?????? - Relation R ?? A ?????? Symmetric ?????????? mij
mji ???????? ????????? (i,j) ??? (j,i) ??? Matrix
??????? R ???? ?????????????????? ???? MR MRT - Relation R ?? A ?????? Anti-symmetric ??? mij 1
???? mij 0 ????? i ? j ???? ??? mij 0 ????
mij 0 ????? i ? j
42Representing Relations Using Matrices
- Boolean Operation ??? Matrix ???????????????
Union ??? Intersect ??? Relation ??? - ?????????? ??????????? Composite of Relation
?????? Matrix ?????????? ????????? Boolean Product
43Examples
- ??? Relation R ?? Set ???????? Matrix ????????
??????? R???? Reflexive, Symmetric ???/????
Antisymmetric - ????????? Relation R1 ??? R2 ?? Set A ????????
Matrix ???????? ???? Matrix ??????? R1 ? R2 ???
R1 ? R2
R ?????? Reflexive ??? Symmetric ??????????
Antisymmetric
44Examples
- ???? Matrix ??????? Relation SoR ????? Matrix
???? R??? S ??? - ???? Matrix ??????? R2 ???????????
-
45Representing Relations Using Directed Graphs
- ????????????????????? Relation ???????????????
??????????? Graph ??????????? Element ??? Set
?????????????? ???????? Ordered Pair
?????????????????????????????????
?????????????????? ????????????????????????????
Directed Graph ???? Digraph
Definition 1 Directed Graph ???? Digraph
???????????? Set V ??? Vertices ???? Nodes
????????? Set E ??? Ordered Pair ??? Element ??
V ??????????? Edges ???? Arcs ?????? Vertex a
?????????? Initial Vertex ??? Edge (a, b) ???
Vertex b ?????????? Terminal Vertex ??? Edge ???
Edge ???????? (a, a) ???????????????????????????
????? Vertex a ??????????????? ???? Edge
??????????? ??????????? Loop
45
46Representing Relations Using Digraphs
- ???????????? Directed Graph ??????????????????????
?????????? Relation ??? ???? - ??? Relation ???? Reflexive ???? ???????? Loop
?????? Vertex ??? Directed Graph ???? - ??? Relation ???? Symmetric ???? ??????? Edge
???????????????? Vertex ???????????????
??????????? Edge ?????????????????????????? - ??? Relation ???? Antisymmetric ??????????? Edge
???(?????????) ???????? Vertex ?????????? - ??? Relation ???? Transitive ??????????? ?????
Edge ??? Vertex x ????? y ?????? Vertex y ????? z
???? ???????? Edge ??? Vertex x ????? z ????
46
47Examples
- ????? Directed Graph ????????????? Vertex a, b,
c, ??? d ??? Edge (a, b), (a, d), (b, b), (b,
d), (c, a), (c, b), ??? (d, b) - ???? Ordered Pair ?? Relation R ???????????
Directed Graph ????????
48Example
- ??????? Relation ??????????? Directed Graph
?????????????????? Reflexive, Symmetric,
Antisymmetric ???/???? Transitive
Symmetric
49Closures of Relations
- ????????????????? Network, ???????????????????????
??????????????? (Node) ???????????
??????????????????????????????????????? Data link
???????????????????? ??????????????
??????????????????????????????????????????????????
????? ???????????????????? Node
?????????????????????????????????????????? Node
???????????????? ????????????????? link
??????????????????????????????????????????????????
???????????? Relation ???????????????????????????
????????????????????? transitive closure ????
??????????????????????????
49
50Closures of Relations
- ?????? R???? Relation ?? Set A, Relation
R???????????????????????????? P ????????????
Reflexive, Symmetric ???? Transitive
?????????????? Relation ?????????????? P ????????
??? S???????????? R ?????? S ?????? Subset
??????? Relation ?????????????? P ????? R
?????????? ????????????????? S ??????? Closure
??? R ????????????? P
50
51Reflexive Closure
- ??????? Relation R (1,1), (1,2), (2,1), (3,2)
?? Set A 1, 2, 3 ????????? R ???????
Reflexive ?????????? Reflexive Relation
??????????????????? R ????????????????????????? - ????? (2,2) ??? (3,3) ???? R ??????? R ????
Reflexive - ???????????? Ordered pair ??? (a, a)
????????????????? R - ??????????????? Relation ????????? R ??????????
????????????? Reflexive Relation ??????????? R
?????????? ???????????????? (2,2) ??? (3,3) - ??????? ????????? Relation R ????? (2,2) ???
(3,3) ?????? ???? Reflexive ???????
???????????????? Reflexive Relation ????? R
?????? ???????????????? Reflexive Closure ??? R - ???????? Relation R ?? Set A ??????????????
Reflexive Closure ??? R?????????????????? ??????
(a,a), a ?A ????????????????? R?????? R - ????????????????? Reflexive Closure ??? R
??????????? R???????? ? ??? Diagonal Relation ??
A ??? ? (a,a) a ?A
52Symmetric Closure
- ??????? Relation R (1,1), (1,2), (2,2), (2,3),
(3, 1), (3,2) ?? Set A 1, 2, 3 ????????? R
??????? Symmetric ?????????? Symmetric Relation
??????????????????? R ????????????????????????? - ????? (2,1) ??? (1,3) ???? R ??????? R ????
Symmetric - ???????????? Ordered pair ??? (b, a) ??? (a, b) ?
R ?????????????? R - ??????????????? Relation ????????????????? R
?????????????? Symmetric Relation ???????????? R
?????????? ???????????????? (2,1) ??? (1,3) - ??????? ????????? Relation R ????? (2,1) ???
(1,3) ?????? ???? Symmetric ???????
???????????????? Symmetric Relation ????? R
?????? ???????????????? Symmetric Closure ??? R - ???????? Relation R ?? Set A ??????????????
Symmetric Closure ??? R????????? union R ????
Inverse ??? R ???? R-1 - ????????????????? Symmetric Closure ??? R
??????????? R? R-1 ?????? R-1 (b,a) (a,b)
?R
53Examples
- ???? Reflexive Closure ??? Relation R (a,b)
a lt b ?? set ??? Integer - ???? Symmetric Closure ??? Relation R (a,b)
a gt b ?? set ??? Positive Integer
54Transitive Closure
- ???????? Relation R (1,3), (1,4), (2,1),
(3,2) ?? Set A 1, 2, 3, 4 ????????? R
??????? Transitive ?????????? Transitive Relation
??????????????????? R ????????????????????????? - ????????????? (1,2), (2,3), (2,4) ??? (3,1) ????
R ????????????????? R ???? Transitive ???
???????????????????????? (3.4) - ????????????????? ordered pair ????????????
?????????????????????????? R ???? Transitive - ??????????????? Transitive Closure
???????????????????????? Reflexive ??? Symmetric - ?????????? Transitive Closure????
??????????????????????????????????? ???? Path
????
55Paths in Directed Graphs
- ????????? Transitive Relation ???? Digraph
????????????????????? path ????
56Example
- ???????????????????????? Path ??? Directed Graph
????????????????????
a,b,d,e ???? Path ???????????? 3
a,e,c,d,b ??????? Path ????????? (c,d) ?????? Edge
b,a,c,b,a,a,b ???? Path ???????????? 6
d,c ???? Path ???????????? 1
c,b,a, ???? Path ???????????? 2
e,b,a,b,a,b,e ???? Path ???????????? 6
????????????? ???? 2 Path ??????? Circuit ???
b,a,c,b,a,a,b ??? e,b,a,b,a,b,e
57Paths in Directed Graphs
- ??????? Path ???????? Relation ???????????
Directed Graph ??????????? ???? Path ??? a ?? b
?? R ????? Sequence ??? Element a, x1, x2,,
xn-1,b ?????? (a, x1) ? R, (x1, x2) ? R, ,
(xn-1,b) ? R ??????????? Theorem 1 - ??????????? Path ????????????????? Transitive ???
Relation ????????????????????????? Vertices ??
Directed Graph ?????? Path ?????????????????
Theorem 1 ??? R ???? Relation ?? Set A ???? Path
???????????? n ?????? n ???? Positive Integer ???
a ?? b ?????????? (a,b) ? Rn
Definiton 2 ??? R???? Relation ?? Set ,
Connectivity Relation R ????????????????????
(a,b) ????? Path ????????????????????? ????? ???
a?? b ?? R
58Transitive Closure
- ????????? Rn ?????????????????? (a,b) ???????
path ??????? n ??? a ?? b ????? R ???? union ???
Rn ??????? ???? - ??? Theorem 2 ????????? ????? Transitive Closure
???????? Connectivity Relation ??????? - Example ??? R ???? Relation ?? Set
?????????????? ????????????????? (a,b) ??? a
?????? b ???? Rn ??? R ?????? n ???? positive
integer ?????????? 1
59Transitive Closure
- ??????????????????? R ?????????????????????? R
??? path ?????????????????? ??????????????????????
?? path ?????????????????? R ????????? Lemma 1 - ??????? Lemma 1 ?????
- ??????????????? Matrix ??????? R ???
(?????????????? Defiiniton 3 ??? Algorithm 1)
???????????? O(n4) (?????????????? Sec. 8.4) - Roy Warshall ??????? algorithm ????????????? R
???????????????????????????? Matrix ?????????????
O(n3)
60Warshalls Algorithm
61Example
62(No Transcript)
63(No Transcript)
64(No Transcript)
65Washalls Algorithm (Cont.)
66(No Transcript)
67Warshalls Algorithm
68Equivalence Relations
69(No Transcript)
70Equivalence Relations
71(No Transcript)
72(No Transcript)
73(No Transcript)
74(No Transcript)
75Equivalence Class Partition
76(No Transcript)
77(No Transcript)
78Partial Orderings
79(No Transcript)
80(No Transcript)
81(No Transcript)
82(No Transcript)
83(No Transcript)
84(No Transcript)
85Lexicographic Ordering
86(No Transcript)
87(No Transcript)
88Hasse Diagram
89(No Transcript)
90(No Transcript)
91Minimal and Maximal
92(No Transcript)
93The Greatest/The Least Element
94(No Transcript)
95(No Transcript)
96Upper Bound and Lower Bound
97(No Transcript)
98LUB and GLB
99Lattice
100(No Transcript)
101(No Transcript)
102(No Transcript)
103Topological Sorting
104(No Transcript)
105(No Transcript)
106(No Transcript)
107(No Transcript)
108Homework 8
- Section 8.1
- 8, 9, 13, 24, 27, 33
- Section 8.2
- 10, 26, 19, 28, 29
- Section 8.3
- 31, 32
- Section 8.4
- 15, 35
- Section 8.5
- 9, 11, 15, 16
- Section 8.6
- 12, 13, 40, 64, 65
- Supplementary
- ---
108