Michaelson Morley Experiment - PowerPoint PPT Presentation

About This Presentation
Title:

Michaelson Morley Experiment

Description:

Pr zisions-Physik mit Neutronen Neutronenquellen Physik mit Neutronen, allgemein Neutronen-Experimente: jenseits SM Theorie Standard Modell Neutronen-Experimente ... – PowerPoint PPT presentation

Number of Views:104
Avg rating:3.0/5.0
Slides: 23
Provided by: Physik4
Category:

less

Transcript and Presenter's Notes

Title: Michaelson Morley Experiment


1
  • Präzisions-Physik mit Neutronen
  • Neutronenquellen
  • Physik mit Neutronen, allgemein
  • Neutronen-Experimente jenseits SM
  • Theorie Standard Modell
  • Neutronen-Experimente diesseits SM
  • Theorie n-Zerfall
  • D. Dubbers
  • U. Heidelberg

2
Neutronenquellen1.1 Reaktor Neutronenquellen1.
2 Spallations-Neutronenquellen1.3 Ultrakalte
Neutronen
3
Physik mit Neutronen allgemein 2.1
Neutronen-Streuung2.3 Angewandte Neutronenphysik
4
Besonderheiten des Neutrons
  • Neutronen
  • sehen besonders gut die leichten Atome (z.B.
    Wasserstoff-Brücken)
  • sehen einzelne Isotope (Kontrastvariation)
  • sehen Magnetismus (Spintronik)
  • sehen Bewegungen der Moleküle, Spins, (auch sehr
    langsame)
  • separat für alle Längenskalen
  • (En Anregungsenergien des Festkörpers,
  • ?n Gitterkonstante des Festkörpers)
  • sehen getrennt kohärente und inkohärente Prozesse
  • (Paar- und Autokorrelations-Funktionen)
  • machen wenig Vielfachstreuung
  • sind meist sehr durchdringend

5
Neutronen-Experimente jenseits des SM3.1
Einführung3.2 Einige Experimente
6
3.1 Einführung
History of the universe a succession of phase
transitions
7
The Standard Model of particle physics
  • small input SYMMETRIES Gauge principle ?'(x)
    ei?(x) ?(x)
  • ('principia') applied to U(1)SU(2)SU(3),
  • ( Lorentz x' Lx, CPT etc. invariances,
    )
  • rich output INTERACTIONS
  • basis for
  • ? equations of motion Maxwell,
    technology,
  • Schrödinger, chemistry,
  • Dirac, molec. biology,
  • solar/nuclear power,
  • ? existence of photons, gluons, W, Z0
    ( carriers of interaction)
  • ? conservation of charges (
    sources of interaction)
  • ? generation of masses

is very successful ...
8
but is only part of the picture
  • Unsolved problems
  • 3 particle families
  • 12 masses ?
  • 4 quark-phases 4 lepton-phases
  • gravitation and quantum mechanics
  • baryon-asymmetry of universe ?
  • mass-energy content of universe
  • Test all laws of physics with the highest
    possible precision
  • (including energy conservation, Lorentz-,
    CPT-invariance, ).
  • To be tested, laws must be well known
  • this is the case mostly in the electroweak and
    the gravitational sector.

9
Particle physics at the lowest energies
Mx
10
Precision reached in low-energy work
  • in energy dE lt 10-23 eV 0.000 000 000 000
    000 000 000 01 eV
  • reached in high-precision ultracold neutron
    and atom work
  • in momentum dp/p lt 10-11 1Å/10m p
  • reached in state-of-the-art neutron optics
    dp
  • in mass dm/m 10-11
  • reached in atomic mass spectrometry
  • in time dt/t 10-16
  • reached with atomic clocks
  • in spin-polariz. dP lt 10-7
  • reached in polarized neutron work

11
Low energy mostly 1st family
  • quarks leptons
  • 3rd b t t ?t
  • 2nd s c µ ?µ
  • 1st d u e ?e
  • first family is
  • - abundant,
  • - long-lived,
  • - useful.

12
3.2 Einige Experimente 1. Why is charge
quantized?
13
Theory of charge quantization
14

2. Why has so much matter survived the Big Bang?
Big Bang theory baryon density 10-18 photon
density baryon density antibaryon
density Observation baryon density 10-9
photon density baryon density gtgt antibaryon
density possible explanation Violation of
'CP-symmetry' Experimentum crucis Electric
Dipole Moment dn of the neutron if
'CP' explanation is right dn 10-27 ? 1 e
cm value required to explain our existence
if 'CP' explanation is wrong dn
10-32 ? 1 e cm value predicted by the
Standard Model Meas.time t from uncertainty rel.
N ?f 1 with ?f ?Bohr t dnE/h t,
i.e. error ?N ?f N
½ ??Bohr t (?UCNV)½ ?dnE t 1 1
Bohr-period/year 10-23 eV
60 years of instrument development
M.v.d. Grinten, K. Jungmann, Sa vorm., S. Paul,
Di abend
15
3. Are there extra spatial dimensions?
16
Neutron quantization in the earth's gravitational
field
Ultracold neutrons (UCNs) probe Newton's law in
the µ-meter and the pico-eV range, set limits on
such extra forces.
17
UCN gravitational levels
  • Neutron density above the mirror measured with a
    position-sensitive detector with spatial
    resolution of 1.5 µm

Measurement of neutron transmission as a function
of the height of the absorber above the neutron
mirror.
18
Experimental limits on non-Newtonian gravity
Ph. Schmidt-Wellenburg, Sa Vorm. Schleching 2006
Difficulties of AFM Electrostatics, geometry,
roughness, lateral Casimir force, theory
19
4. Neutron oscillations
a) Is baryon number conserved?
  • Neutrinos oscillate ?e? ?µ , etc. ?m
  • Lepton number oscillations Le ? Lµ, etc. 0.05
    eV
  • Kaons oscillate K ? K'
  • Strangeness oscillations S ? ? S 10-18
    eV
  • Do neutrons oscillate? n ? nbar
  • Baryon-number oscillations B ? ? B ?
  • Neutron oscillations allowed in various
    Grand-Unified Theories

20
The ILL neutron oscillation experiment
The magnetically shielded beam lt 5 nT
The antineutron detector
'Appearence experiment' Experimental limit tn
nbar gt 0.86108 s (90 c.l.) ?mc2
ltnHnbargt lt 10-23 eV probes 105 GeV range
(model dependent) Heidelberg-ILL-Padova-Pavia
collaboration (M. Baldo-Ceolin et al., 1994)
21
b) Is Dark Matter from a mirror world?
  • Is there a sterile mirror world?
  • Mohapatra, 2005 n ? nmirror
  • can neutrons spontaneously disappear into
    sterile,
  • i.e. unobservable mirror neutrons?
  • Search for neutron - mirror-neutron oscillations
  • Experiment U. Schmidt, spring 2007
  • using zero-field spin-echo apparatus at FRM2, and
    ultrafast 'CASCADE' n-detector
  • 'disappearence experiment' - experimental limit
  • NBgt0/NB0 1.00002(3) ? tn-nmirror gt 2.7 s
    (90 c.l.)
  • September 2007 New limit from ILL, Serebrov et
    al. tn-nmirror gt 400 s (90 c.l.)

K. Kirch, Mo Abend?
22
Summary low-energy neutron physics beyond S.M.
  • Why is charge quantized? (qn)
  • Why is so much matter and so little antimatter
    in the universe? (EDM)
  • Are there hidden dimensions of space-time?
    (n-free fall)
  • Can matter oscillate into antimatter?
    (n-nbar)
  • Is there a sterile mirror world?
    (n-nmirror)
  • (Paul Di Abend)
Write a Comment
User Comments (0)
About PowerShow.com