Introduction to S-PLUS (Win2000/NT) - PowerPoint PPT Presentation

About This Presentation
Title:

Introduction to S-PLUS (Win2000/NT)

Description:

Introduction to S-PLUS (Win2000/NT) – PowerPoint PPT presentation

Number of Views:157
Avg rating:3.0/5.0
Slides: 76
Provided by: Comput632
Category:

less

Transcript and Presenter's Notes

Title: Introduction to S-PLUS (Win2000/NT)


1
Introduction to S-PLUS
(Win2000/NT)
  • ????????????????

2
Preliminaries
  • History of S-Plus
  • Open Source, Public Domain version of the S
    language
  • Example of using R in a teaching context
  • Useful resources

3
The History of S-Plus
  • The S Language is developed by ATT Bell Labs
    1980s
  • The commercial value-added version marketed by
    Stat-Sci Inc.
  • MathSoft acquires Statsci in 1992 (markets
    MathCad software)
  • S-Plus 4.0 released in 1997
  • S-Plus 4.5 released in 1998 (WIN95/NT)
  • S-Plus 2000 released in 2000 (marketed by
    Insightful Corp http//www.insightful.com)
  • S-Plus 6.0 released in fall 2001

4
Open Source Version of the S language
  • R is an open source version of the S language
    (http//www.cran.r-project.org)
  • Implemented for Linux, Windows, Macintosh
  • No GUI, only command interface
  • Has many libraries available covering almost all
    areas of modern statistics

5
An Example of Using R through a Web Application
Server
  • http//www.unt.edu/benchmarks/october01/rss.htm
  • Programs can be submitted through a web browser
    interface
  • Programs can be modified and resubmitted to get
    new results
  • Useful as a teaching aid

6
Useful Resources
  • http//www.insightful.com/
  • The Basics of S and S-PLUS (second
    edition)Andreas Krause and Melvin
    OlsonSpringer-Verlag, New York (2000)
  • An introduction to S-PLUS and the Hmisc and
    Design libraries C.F. Alzola and F.E. Harrell,
    Freely available document
  • Regression Modeling Strategies with Applications
    to Linear Models, Logistic Regression, and
    Survival Analysis F.E. Harrell, Springer (2001)

7
Use Resources (cont.)
  • Modern Applied Biostatistical Methods Using
    S-PLUSS. Selvin, Oxford University Press
    (1998)ISBN 0-19-512025-6
  • Introduction to Robust Estimation and Hypothesis
    TestingRand Wilcox, Academic Press (1997)ISBN
    0-12-751545-3
  • WebLinks (S-news listserve, and Software archive)
  • http//lib.stat.cmu.edu/s-news/
  • http//lib.stat.cmu.edu/S/

8
Features of S-Plus
  • S-Plus is an objected oriented programming
    language
  • Version 2000 has a GUI which is extensible
  • S-Plus has over 3,000 functions which allow total
    control of data and graphics
  • S-Plus 2000 accommodates data analysts from
    novice to expert
  • There is a very active S-Plus user group (S-news)

9
Getting Help in S-Plus
  • Help for general tasks, S-Plus functions, etc.
  • Can use the Help index from GUI interface
  • Alternatively can use help function in the
    Command Window
  • Example In the command window at the gt prompt
    type,
  • gt help(help) help on help
  • gt help(scan) help on scan()
    function
  • General Help Help Menu from GUI
  • Function index, keyword search, on-line manuals
    (user manual, programmer manual, statistics
    manual, visual demo

10
How to stop computations or quit an S-Plus session
  • To cancel an ongoing computation, press ESC
  • Cancels long outputs
  • Aborts long computations
  • To quit from S-Plus
  • From GUI use File-Exit
  • From Command Window use
  • gt q ( )

11
Getting Data into S-Plus
  • Dialog box starts up as a default
  • Select existing data or import data from a file
  • For existing data, enter the name of an S-Plus
    object in the Name box

12
Data Import Options
  • Select the Options tab for import options
  • By default, ASCII files are assumed to have
  • column labels on row 1 (blank rows ignored)
  • data from row 2 on
  • columns are seperated by whitespace or comma
  • Can change defaults with import options
  • First data line, separators, column
    specifications
  • Note .dat files are assumed to be GAUSS files

13
Data Objects
  • When data are imported, the data are displayed in
    a data window and a new object is created
  • The name of the data object is chosen from the
    file name, or can be specified in the import
    dialog

14
Data Window
  • The data appears in a spreadsheet
  • This includes row names and column names
  • Can click on a column name to select a column
  • Use shift-click to select a block of columns
  • Use ctrl-click to select non-adjacent columns

15
Data Window (cont.)
  • The order of selection is important (selected
    columns will be used in graphs and analyses)

16
Object Browser
  • S-Plus is object oriented
  • All data, functions, results from analyses,
    plots, etc., are objects
  • The object browser organizes all the objects you
    create
  • Left half - object type Right half - list of
    objects

17
Command Window
  • Every menu and toolbar generates the S-Plus
    command language
  • S-Plus is a complete programming language
  • This language has loops, functions, expressions,
    and is object oriented
  • Most of the functionality and flexibility of
    S-Plus is accessed through the language

18
Creating Graphs
  • Open GRAPH - 2D Plot, or GRAPH - 3D Plot
    menu option
  • Select column(s) for plotting from the Data
    Window
  • ctrl-click the column for the x-axis
  • ctrl-click the column for the y-axis

19
Creating Graphs (cont.)
  • ctrl-click the column for the z-axis if needed
  • click on the palette button for the desired plot

20
Creating Trellis Graphics
  • Any plot can be conditioned by the value of any
    other variable in the data
  • First create a plot, then select the conditioning
    column in the data window
  • Drag the column (grabbing a cell) to the title
    area of plot

21
Creating Trellis Graphics (cont.)
  • The cursor will change to a when ready to
    drop
  • The plot is redrawn with panels for subranges of
    the conditioning variable

22
The S-Plus Language
  • Expressions are entered at the prompt gt
  • S-Plus prints out the result
  • gt 33
  • 1 6
  • gt sin(pi)
  • 1 1.224606e-016
  • gt sqrt(100)
  • 1 10

23
Additional prompt
  • An incomplete expression leads to a second
    prompt
  • Can continue at the second prompt
  • gt sqrt(
  • 100)
  • 1 10

24
Getting stuck at prompt
  • If the prompt continues after hitting return,
    then enter many ) to get the gt prompt
  • Then start your expression again
  • gt sqrt(
  • )))))
  • Error in parse(text txt) Syntax error No
    opening parenthesis, before ")" at this point
  • sqrt(
  • ))
  • Dumped
  • gt sqrt(100)

25
Scalars and Assignments
  • Read this as weight gets 190
  • This assigns the value 190 to the scalar named
    weight
  • The assignment operator is the sequence of
    characters lt-
  • gt weightlt-190
  • gt weight
  • 1 190

26
Character Assignments
  • Character values are inserted in quotes
  • If the quotes are omitted, S-Plus will look for a
    data object called, Jim , to assign to person
  • The result is not printed until you enter the
    object name
  • gt personlt-"Jim"
  • gt person
  • 1 "Jim"

27
Vectors
  • gt rnorm(10)
  • 1 0.3037020
  • 2 -0.5248669
  • 3 1.4674553
  • 4 0.4536315
  • 5 0.4077797
  • 6 0.5362221
  • 7 0.0759569
  • 8 0.3239556
  • 9 -1.3531665
  • 10 -2.4226150
  • The function rnorm( ), returns a vector of
    random deviates from the normal distribution
  • The n on the left shows where the row starts

28
Vectors (cont.)
  • A single number is a vector of length 1
  • We can make vectors using the concatenation
    function c( )
  • We assign the integers 1,2,3 to the vector x
  • gt mean(rnorm(10))
  • 1 0.5807564
  • gt xlt-c(1,2,3)
  • gt x
  • 1 1 2 3

29
Vectors (cont.)
  • We can create a vector of names
  • We can create a vector of sequential integers
    using the function ab , where a is the
    starting integer and b is the ending integer
  • gt peoplelt-c("Jim", "Sue", "Dave")
  • gt people
  • 1 "Jim" "Sue" "Dave"
  • gt 510
  • 1 5 6 7 8 9 10

30
Object Names
  • Object names may contain,
  • Letters abcDEF
  • Numbers 0123456789
  • Dot .
  • Examples of valid names
  • height
  • weight
  • x.var
  • .yvar
  • x.y.var
  • x110

31
Object names (cont.)
  • Objects names cannot use an underscore, a hyphen,
    begin with a number, or use reserved symbols
  • Examples of invalid object names
  • _xvar
  • y_var
  • x-yvar
  • 120xvar
  • T
  • F
  • NA

32
Handling Objects
  • We can list out all of the objects
  • gt objects()
  • 1 ".Last.value" ".Random.seed" "Cars"
    "last.dump"
  • 5 "last.warning" "people" "person"
    "weight"
  • 9 "weights" "x"
  • Objects remain until removed, even if one quits
    S-Plus
  • gt rm(x)
  • gt x
  • Error Object "x" not found
  • Dumped
  • Equivalently, you can use the object browser

33
Objects as variables
  • Objects can be used in expressions
  • gt xlt-110
  • gt mean(x)
  • 1 5.5
  • gt ylt-c(x,10)
  • gt length(y)
  • 1 11
  • gt 2y
  • 1 2 4 6 8 10 12 14 16 18 20 20

34
Vector Arithmetic
  • Scalar Functions work on elementwise basis
  • Can perform scalar and vector arithmetic
  • gt xlt-15
  • gt x2
  • 1 1 4 9 16 25
  • gt 2x
  • 1 2 4 6 8 10
  • gt 2xsqrt(x)
  • 1 3.000000 5.414214
  • 3 7.732051 10.000000
  • 5 12.236068

35
Logical Vectors
  • Expressions with relational operators return
    logical vectors
  • T is True, F is False
  • gt xlt-rnorm(5)
  • gt x
  • 1 1.2698616 -1.1080517
  • 3 0.5627334 0.2454234
  • 5 0.2919052
  • gt xlt0
  • 1 F T F F F

36
Missing values
  • A missing value is represented by NA
  • Operations on NA return NA
  • The function is.na( ) checks for missing values
  • gt xlt-c(1, NA, 3)
  • gt x
  • 1 1 NA 3
  • gt x1
  • 1 2 NA 4
  • gt sum(x)
  • 1 NA
  • gt is.na(x)
  • 1 F T F

37
Vector indexing
  • Use brackets, to select elements of a vector
  • Negative indices remove elements
  • gt xlt-c(2,4,6,8,10)
  • gt x
  • 1 2 4 6 8 10
  • gt x1
  • 1 2
  • gt x35
  • 1 6 8 10
  • gt xc(1,3,5)
  • 1 2 6 10
  • gt x-(13)
  • 1 8 10

38
Logical Indices
  • gt xlt-rnorm(5)
  • gt x
  • 1 -2.4592950 0.9074605
  • 3 0.5088648 -1.1184415
  • 5 0.5137160
  • gt xxlt0
  • 1 -2.459295 -1.118441
  • gt log.xlt-log(x)
  • Warning messages
  • NAs generated in log(x)
  • gt xis.na(log.x)
  • 1 -2.459295 -1.118441
  • gt log.x!is.na(log.x)
  • 1 -0.09710521 -0.67557299
  • 3 -0.66608473
  • A logical index selects elements
  • Symbols for logical operators
  • lt Less than
  • gt Greater than
  • lt Less than or equal to
  • gt Greater than or equal to
  • Equal to
  • ! Negation operator
  • ! Not equal to

39
Replacement
  • You can use on the left hand side of an
    assignment, lt-
  • gt xlt-sample(18)
  • gt x
  • 1 2 6 8 3 1 5 7 4
  • gt x6lt-NA
  • gt x
  • 1 2 6 8 3 1 NA 7 4
  • gt xis.na(x)lt-0
  • gt x
  • 1 2 6 8 3 1 0 7 4

40
Functions
  • Functions are called like this
  • function.name(argument, argument, .)
  • Functions always return a value
  • NULL represents no value
  • Example
  • seq(from1, toend, by1, lengthinferred,
    alongNULL)
  • gt seq(1,5)
  • 1 1 2 3 4 5
  • gt seq(10, 20, length6)
  • 1 10 12 14 16 18 20
  • gt seq(to100, by15, length7)
  • 1 10 25 40 55 70 85 100
  • gt seq(length10)
  • 1 1 2 3 4 5 6 7 8
  • 9 9 10

41
Functions (cont.)
  • Function arguments have
  • position(first, second, .)
  • function name
  • default values for function options (sometimes)
  • Examples
  • rnorm(n, mean0, sd1)
  • rep(x, timesinferrred, length.outinferred)

gt rep(13,2) 1 1 2 3 1 2 3 gt rep(13,
length8) 1 1 2 3 1 2 3 1 2 gt rep(13,
c(3,2,1)) 1 1 1 1 2 2 3 gt rep() Error in rep
Argument "x" is missing, with no default rep()
Dumped gt rep(13, c(3,2,1), 5) 1 1 2 3 1 2
42
Matrices
  • matrix(dataNA, nrowinferred,
    ncolinferred, byrowF, dimnamesNULL)
  • The function matrix( ) reads data into a matrix
  • The number of columns is specified by using the
    argument ncol
  • And/Or the number of rows can be specified by the
    argument, nrow
  • gt xlt-matrix(110, nrow2)
  • gt x
  • ,1 ,2 ,3 ,4 ,5
  • 1, 1 3 5 7 9
  • 2, 2 4 6 8 10
  • gt dim(x)
  • 1 2 5
  • gt x.matrixlt-matrix(c(20,10,3,1,7,4), ncol2)
  • gt x.matrix
  • ,1 ,2
  • 1, 20 1
  • 2, 10 7
  • 3, 3 4

43
Matrices (cont.)
  • We can attach names to columns with the dimnames
    option
  • gt xlt-matrix(c(120), ncol4, byrowT,
    dimnameslist(NULL, c("col1", "col2", "col3",
    "col4")))
  • gt x
  • col1 col2 col3 col4
  • 1, 1 2 3 4
  • 2, 5 6 7 8
  • 3, 9 10 11 12
  • 4, 13 14 15 16
  • 5, 17 18 19 20

44
Matrices (cont.)
  • Specifying byrowT forces S-Plus to read the data
    in row by row
  • When the argument is not specified, or specified
    as byrowF , S-Plus assumes the data is
    written in column by column
  • gt x.matrixlt-matrix(c(20,10,3,1,7,4), ncol2,
    byrowT)
  • gt x.matrix
  • ,1 ,2
  • 1, 20 10
  • 2, 3 1
  • 3, 7 4

45
Matrices (cont.) - Indexing
  • gt xlt-matrix(115, nrow3, byrowT)
  • gt x
  • ,1 ,2 ,3 ,4 ,5
  • 1, 1 2 3 4 5
  • 2, 6 7 8 9 10
  • 3, 11 12 13 14 15
  • gt x2,3
  • 1 8
  • gt x23, 35
  • ,1 ,2 ,3
  • 1, 8 9 10
  • 2, 13 14 15
  • gt x,1
  • 1 1 6 11
  • gt x1,
  • 1 1 2 3 4 5
  • To extract a value from a matrix, use two
    elements in the subscript
  • The first element applies to rows
  • The second element applies to columns
  • If one dimension is not specified, all elements
    for that dimension are extracted

46
Constructing Matrices from vectors
  • Matrices can be constructed from row vectors and
    column vectors using cbind and rbind
  • Binding together vectors of different attributes
    (character and numeric for example), is not
    allowed - vectors will be coerced to a similar
    attribute
  • Numeric and character vectors will be coerced to
    character
  • gt x lt- c(3,4,5)
  • gt y lt- c(6,7,8)
  • gt x.ylt-cbind(x,y)
  • gt x.y
  • x y
  • 1, 3 6
  • 2, 4 7
  • 3, 5 8
  • gt x lt- c(3,4,5)
  • gt x lt- c(6,7,8)
  • gt x.ylt-rbind(x,y)
  • gt x.y
  • ,1 ,2 ,3
  • x 3 4 5
  • y 6 7 8

47
Constructing Matrices from vectors (cont.)
  • Example binding together a character vector and
    a numeric vector coerces to a character matrix
  • What is need is a data object called a data frame
    (similar to SPSS or SAS datasets)
  • gt x lt- c(3,4,5)
  • gt y lt- c("Three","Four","Five")
  • gt x.ylt-rbind(x,y)
  • gt x.y
  • ,1 ,2 ,3
  • x "3" "4" "5"
  • y "Three" "Four" "Five"

48
Converting Matrices to Data Frames
  • Data Frames are a data object that allows one to
    bind data vectors of different types together,
    such that the data can be accessed like a matrix
  • Most of the dialog boxes in the GUI operate on
    Data Frames
  • gt x lt- c(3,4,5)
  • gt y lt- c("Three","Four","Five")
  • gt x.ylt-data.frame(x, y)
  • gt x.y
  • x y
  • 1 3 Three
  • 2 4 Four
  • 3 5 Five

49
Arrays
  • gt xlt-array(124, c(3, 4, 2))
  • gt x
  • , , 1
  • ,1 ,2 ,3 ,4
  • 1, 1 4 7 10
  • 2, 2 5 8 11
  • 3, 3 6 9 12
  • , , 2
  • ,1 ,2 ,3 ,4
  • 1, 13 16 19 22
  • 2, 14 17 20 23
  • 3, 15 18 21 24
  • gt x,2,
  • ,1 ,2
  • 1, 4 16
  • 2, 5 17
  • An array is a data construct that can be thought
    of as a multi-dimensional (up to eight
    dimensions)
  • An array is defined as
  • array(data, dim)
  • If we fix second index at 2 we get a 3x2 matrix

50
The apply( ) function
  • gt xlt-matrix(c(110), ncol2, byrowT)
  • gt x
  • ,1 ,2
  • 1, 1 2
  • 2, 3 4
  • 3, 5 6
  • 4, 7 8
  • 5, 9 10
  • gt x.loglt-apply(x, 2, log)
  • gt x.log
  • ,1 ,2
  • 1, 0.000000 0.6931472
  • 2, 1.098612 1.3862944
  • 3, 1.609438 1.7917595
  • 4, 1.945910 2.0794415
  • 5, 2.197225 2.3025851
  • The apply function successively applies a
    function of your choice to each row, each column,
    and each level of a higher dimension of a matrix
    or array
  • apply(data, dim, function)

51
Lists
  • gt xlistlt-list(dat15, name"John", yc(32, 45))
  • gt xlist
  • dat
  • 1 1 2 3 4 5
  • name
  • 1 "John"
  • y
  • 1 32 45
  • gt xlistdat
  • 1 1 2 3 4 5
  • gt xlistname
  • 1 "John"
  • gt xlisty
  • 1 32 45
  • gt xlist3
  • 1 32 45
  • A List is an ordered collection of arbitrary
    objects
  • A list can be indexed like a matrix or array
  • Index an element of a list by using
  • listnameelementname listnameindex
    listnameelementnameindex

52
lapply( ) function
  • gt Llt-list(vec110, matmatrix(9988, 3,4))
  • gt L
  • vec
  • 1 1 2 3 4 5 6 7 8 9 10
  • mat
  • ,1 ,2 ,3 ,4
  • 1, 99 96 93 90
  • 2, 98 95 92 89
  • 3, 97 94 91 88
  • gt lapply(L, mean)
  • vec
  • 1 5.5
  • mat
  • 1 93.5
  • The tool lapply ( ) is designed for working on
    all elements of a list using the same function
  • Example Calculate the mean of every list
    element

53
lapply () function (cont.)
  • Can use the lapply to apply an arbitrary function
    to the corresponding elements of two lists
  • Example Take the mean of elements in first list
    position, and add the mean of elements in the
    first position of a second list
  • gt list1 lt- list(c(2,4,6,8), c(10,12,14,16))
  • gt list2 lt- list(c(18,20,22,24), c(26,28,30,32))
  • gt lapply(12, function(i, x, y) mean(xi)
    mean(yi), x list1, y list2)
  • 1
  • 1 26
  • 2
  • 1 42

54
unlist() function
  • Simplifies the recursive structure of a list
  • Usage
  • unlist(data, recursiveT, use.namesT)
  • Example Create a vector from a list with two
    elements
  • gt x.listlt-list(c(2,4,6,8), c(10,12,14,16),
    c(18,20,22,24))
  • gt x.list
  • 1
  • 1 2 4 6 8
  • 2
  • 1 10 12 14 16
  • 3
  • 1 18 20 22 24
  • gt unlist(x.list)
  • 1 2 4 6 8 10 12 14 16 18 20 22 24

55
Creating Functions
  • Functions allow modular programming
  • Functions can call other functions
  • Functions have calling parameters enclosed in
    parenthesis with the main body inclosed in braces
  • gt x.powerlt-function(x, power)
  • xlt-xpower
  • x
  • gt xlt-c(2,4,6,8)
  • gt x.power(x, 2)
  • 1 4 16 36 64
  • gt x.power(x, 3)
  • 1 8 64 216 512

56
Looping
  • Looping can allow iteration over indices of a
    scalar, vector, matrix, or list
  • Looping is slow in S-Plus vector operations
    are encouraged
  • gt templt-0
  • gt for (i in 14)
  • templt-itemp
  • gt temp
  • 1 10

57
ifelse() function
  • Compares the elements of two objects according to
    some boolean statement
  • Can return scalar or vector values for a true
    condition, and a different set of values for a
    false condition
  • gt xlt-c(1,3,5)
  • gt ylt-c(6,4,2)
  • gt zlt-ifelse(xlty, 1, 0)
  • gt z
  • 1 1 1 0

58
Matrix Algebra
  • Transpose t( )

Matrix Multiply gt t(x)x ,1 ,2
1, 5 15 2, 15 55 gt
gt xlt-cbind(rep(1,5), 15) gt x ,1 ,2
1, 1 1 2, 1 2 3, 1
3 4, 1 4 5, 1 5 gt t(x) ,1
,2 ,3 ,4 ,5 1, 1 1 1 1
1 2, 1 2 3 4 5 gt
59
Matrix Algebra (cont.)
  • Matrix Inverse solve ()
  • gt solve(t(x)x)
  • ,1 ,2
  • 1, 1.1 -0.3
  • 2, -0.3 0.1
  • gt
  • Matrix Decompositions
  • Eigenvector eigen ( )
  • Singular Value svd ( )
  • Cholesky chol ( )

gt eigen(solve(t(x)x)) values 1 1.18309519
0.01690481 vectors ,1 ,2
1, 0.9637149 0.2669336 2, -0.2669336
0.9637149
60
Exercises (a)
  • Create the following matrix called marks and put
    in the appropriate label names
  • gt marks
  • Test1 Test2 Test3 Final
  • 1, 20 23 18 48
  • 2, 16 15 18 40
  • 3, 25 20 22 40
  • 4, 14 19 18 42

61
Solutions (a)
  • gt markslt-matrix(c(20,23,18,48,16,15,18,40,25,20,22
    ,40,14,19,18,42),byrowT,
  • nrow4,dimnameslist(NULL,c("Test1","Test2","Tes
    t3","Final")))

62
Exercises (b)
  • Add the following row to the bottom of the
    matrix
  • 10 15 14 30

63
Solutions (b)
  • gt markslt-rbind(marks,c(10,15,14,30))
  • gt marks
  • Test1 Test2 Test3 Final
  • 1, 20 23 18 48
  • 2, 16 15 18 40
  • 3, 25 20 22 40
  • 4, 14 19 18 42
  • 5, 10 15 14 30

64
Exercises (c)
  • Change the fifth mark for test 2 from a 15 to a
    17

65
Solutions (c)
  • gt marks5,2lt-17
  • gt marks
  • Test1 Test2 Test3 Final
  • 1, 20 23 18 48
  • 2, 16 15 18 40
  • 3, 25 20 22 40
  • 4, 14 19 18 42
  • 5, 10 17 14 30

66
Exercises (d)
  • Print all the marks for test 3

67
Solutions (d)
  • gt marks, 3
  • 1 18 18 22 18 14

68
Exercises (e)
  • Print the final marks for those people with marks
    greater than 16 on test 1

69
Solutions (e)
gt marksmarks,1gt16,1 1 20 25
70
Exercises (f)
  • Print the marks matrix without the column for
    test 3

71
Solutions (f)
  • gt marks,-3
  • Test1 Test2 Final
  • 1, 20 23 48
  • 2, 16 15 40
  • 3, 25 20 40
  • 4, 14 19 42
  • 5, 10 17 30

72
Exercises (g)
  • Print the number of rows in the matrix

73
Solutions (g)
  • gt nrow(marks)
  • 1 5

74
Additional Exercises
  • Create a vector INTS containing the integers from
    1 to 50
  • Create a vector X which is 2 to the power of INTS
  • Create a vector Y which is INTS raised to the
    second power
  • Create a T/F vector which contains a T when
    elements of x and y are equal and an F when they
    are not equal

75
Solutions to additonal exercises
  • gt Xlt-2INTS
  • gt Ylt-INTS2
  • gt X
  • 1 2.000000e000 4.000000e000 8.000000e000
    1.600000e001 3.200000e001 6.400000e001
    1.280000e002
  • 8 2.560000e002 5.120000e002 1.024000e003
    2.048000e003 4.096000e003 8.192000e003
    1.638400e004
  • 15 3.276800e004 6.553600e004 1.310720e005
    2.621440e005 5.242880e005 1.048576e006
    2.097152e006
  • 22 4.194304e006 8.388608e006 1.677722e007
    3.355443e007 6.710886e007 1.342177e008
    2.684355e008
  • 29 5.368709e008 1.073742e009 2.147484e009
    4.294967e009 8.589935e009 1.717987e010
    3.435974e010
  • 36 6.871948e010 1.374390e011 2.748779e011
    5.497558e011 1.099512e012 2.199023e012
    4.398047e012
  • 43 8.796093e012 1.759219e013 3.518437e013
    7.036874e013 1.407375e014 2.814750e014
    5.629500e014
  • 50 1.125900e015
  • gt Y
  • 1 1 4 9 16 25 36 49 64 81
    100 121 144 169 196 225 256 289 324 361
    400 441
  • 22 484 529 576 625 676 729 784 841 900
    961 1024 1089 1156 1225 1296 1369 1444 1521 1600
    1681 1764
  • 43 1849 1936 2025 2116 2209 2304 2401 2500
  • gt equallt-(XY)
  • gt equal
  • 1 F T F T F F F F F F F F F F F F F F F F F F
    F F F F F F F F F F F F F F F F F F F F F F F F F
    F F F
Write a Comment
User Comments (0)
About PowerShow.com