- PowerPoint PPT Presentation

1 / 20
About This Presentation
Title:

Description:

The chromatic gap and its extremes Andr s Seb , CNRS, G-SCOP,Grenoble with Andr s Gy rf s MTA SZTAKI, Budapest, Nicolas Trotignon, CNRS, LIAFA, Paris – PowerPoint PPT presentation

Number of Views:23
Avg rating:3.0/5.0
Slides: 21
Provided by: SEBO150
Category:

less

Transcript and Presenter's Notes

Title:


1
 
The chromatic gap and its extremes
  • András Sebo, CNRS, G-SCOP,Grenoble
  • with
  • András Gyárfás MTA SZTAKI, Budapest,
  • Nicolas Trotignon, CNRS, LIAFA, Paris

2
What is the maximum of the difference
chromatic number max cliquethat can
be reached by graphs on at most n
vertices ?
THE PROBLEM
3
?(G) min cover by cliques
chromatic number of complement ?(G) max
stable (independent) set of vertices (no induced
edge) gap (G) ?(G) - ?(G) ? 0 This is the
(integer linear programming) duality gap of a
related linear program
4
Perfect, critical, extremal
  • Perfect gap 0 ? induced subgraph
  • Gap is not necessarily monotonous
  • gap-critical G, gap(H)ltgap(G) ? induced H
  • Minimal imperfect gap-critical with gap 1.
  • t-extremal graph of min order with gap t
  • t-extremal ? gap-critical ? factorcritical?

? 3
? 3 gap0
? 2 gap1
5
Critique, pas critique ?
G facteur-critique ? C9 ?
C93 ?
G
6
s(t) smallest order of a graph of
gap t
gap(n)max gap(G) G has n vertices
gap-extremal ?
gap(i)0 i ?4,
gap-critical !
  • ...

gap(5)1, gap(10)2, ???
s(1)5, s(2)10, , s(t) 5t ?
7
s(3)15 ? Counterexample
  • R13 (3,5)-Ramsey

n13, ?2, ?4, ?7 gap 3
s(3) 13
8
Ramsey number, graph
  • Ramsey number R(?,?)the smallest integer
    s.t.
  • every graph on at least R(?,?) vertices
  • has either an ?-clique or an ?-stable set.
  • (Ramsey theorem it is finite.)
  • Ramsey graph Graph on R(?,?) 1 vertices
    having neither an ?-clique nor an ?-stable set.
  • Example R(3,3) 6 (3, 3) Ramsey graph
  • R(3,2), R(3,3), 2, 6, 9, 14, 18, 23, 28,
    36, ?
  • R(4,4), R(4,5) 18, 25, ?

9
EASY FACTS
  • Fact 1 If C1 , , Ck the components of G,
  • gap(G) gap(C1) gap (Ck)
  • G is gap-critical ? all of its components are.
  • Fact 2 If G is a graph and Q a clique
  • ?(G) ? ?(G-Q) ? ?(G)-1, ?(G) ? ?(G-Q) ? ?(G)-1
  • gap(G) 1 ? gap(G-Q) ? gap(G) - 1
  • Fact 3 If a t-extremal graph has a k-clique,
  • s(t) ? s(t-1) k

10
How big should ? be for a big gap ?
  • gap ? - ? ? ? n
    / ?
  • ? large ? small ? large (Ramsey)
  • How does gap ? - ? change if ? varies ?
  • Conjecture t-extremal graphs are ?-free
    (?2).
  • gap2 (n) max gap of a triangle-free on n
    vertices
  • s2 (t) min order of a triangle-free of gap t.
  • Theorem s(t) 2t ? (sqrt (t log t ) ) s2
    (t)

gap(n)gap2 (n), s(t)s2 (t) for all n, t
11
Inverse Ramsey
?(n) min ?(G) G triangle-free of order
n If R(3, ? ) ? n lt R(3, ? 1 ) ,then ?(n)
? For instance ?(5) 2 , ?(6) 3
Fact If n n1 n2 , then ?(n) ? ?(n1)
?(n2) If n is Ramsey-perfect ?(10)?(5)
?(5) Conjecture This is the only nontriv
example
12
A version of the main result
  • Theorem ?n / 2? - ?(n) ? gap(n) ? ?n / 2? -
    ?(n)3
  • and with the exception of Ramsey numbers
  • 1, , 14, there is equality with the lower bound
  • The extremal graphs are triangle-free.

13
The proof relies on two lucky facts
  • (1) gap2 is relatively easy to determine
  • (2) Whenever gap gt gap2
  • the growth of gap slows down
  • while gap2 grows constantly except at Ramsey
  • If s (t1) ? s2 (t1), then s (t1) ? s (t)3
  • s2 (t1)s2 (t) 2, unless s2 (t)1 or 2 is
    Ramsey

14
The gap of triangle-free graphs
  • ? ? n / 2
  • The more you want, the less you get
  • For gap-critical graphs,(if they are connected)
  • ? ?n / 2? , so gap ?n / 2? - ?(n)

  • If not connected, apply to components
  • the components are connected, gap-critical

15
  • If G is gap-critical, ?(G) gt ?(G-v) for all v.
  • If G is triangle-free, connected and
  • ?(G) gt ?(G-v) for all v, then ?(G) ?n / 2?
  • Gallai For triangle-free ? ? n
  • Gallai If ? (G-v) ? (G) for every vertex v,
  • then G-v has a perfect matching --.
  • In particular, n is odd

16
Triangle-free, connected contd
  • THEN GAP-CRITICAL ?FACTOR-CRITICAL
  • Proof of Gallais Lemma
  • Equivalent to Tuttes theorem (? Tutte-set)

17
The gap of triangle free graphs
  • Theorem gap2 (n) ?n / 2? - ?(n) , or 1
  • the latter ? n is even Ramsey-perfect.
  • Proof At most 2 comp from inequalities about
    Ramsey
  • if n n1 n2 n3 , then ?(n) lt ?(n1) ?(n2)
    ?(n3)
  • 2 comp if of only if n is even, Ramsey-
    perfect, and the
  • components have odd size n1, n2 , ?(n) ?(n1)
    ?(n2)
  • For the connected components by Gallai ? ?n /
    2?

18
The proof relies on two lucky facts
  • (1) gap2 is relatively easy to determine
  • (2) Whenever gap gt gap2
  • the growth of gap slows down
  • while gap2 grows constantly except at Ramsey
  • If s (t1) lt s2 (t1), then s (t1)
    ? s (t)3

?n / 2? - ?(n)
19
Theorem 0 ? gap(n) - gap2 (n) ? 2and they
are equal everywhere but on small constant size
intervals after Ramsey numbers.
  • Corollary All subgraphs of (3, ? ) Ramsey-graphs
  • of order at least R(3, ?-1) are perfectly
    matchable.

T 1 2 3 4 5 9 10 s(t) 5 10 13
17 20 or 21, 32 or 33 35 R
6, 9, 14, 18, 23,28,
36
20
0 ? s2(t) - s (t) ? 10?n / 2?-?(n) ?
gap(n) ? ?n / 2? - ?(n)3
almost always
  • NOT YET THE END
  • The conjectures ?
  • Dramatic corollaries for Ramsey ?
  • s(5) 20 or 21 ( s2(5) ) ?
Write a Comment
User Comments (0)
About PowerShow.com