Extractors: applications and constructions - PowerPoint PPT Presentation

About This Presentation
Title:

Extractors: applications and constructions

Description:

Extractors: applications and constructions Avi Wigderson IAS, Princeton Seeded Extractors: original motivation Unbiased, independent Probabilistic algorithms ... – PowerPoint PPT presentation

Number of Views:64
Avg rating:3.0/5.0
Slides: 26
Provided by: Avi149
Learn more at: https://www.math.ias.edu
Category:

less

Transcript and Presenter's Notes

Title: Extractors: applications and constructions


1
Extractors applications and constructions
Seeded
Randomness
  • Avi Wigderson
  • IAS, Princeton

2
Extractors original motivation
Extractor Theory
3
Applications of Extractors
  • Using weak random sources in prob algorithms
  • B84,SV84,V85,VV85,CG85,V87,CW89,Z90-91
  • Randomness-efficient error reduction of prob
    algorithms Sip88, GZ97, MV99,STV99
  • Derandomization of space-bounded algorithms
    NZ93, INW94, RR99, GW02
  • Distributed Algorithms WZ95, Zuc97, RZ98,
    Ind02.
  • Hardness of Approximation Zuc93, Uma99, MU01
  • Cryptography CDHKS00, MW00, Lu02 Vad03
  • Data Structures Ta02

4
Unifying Role of Extractors
  • Extractors are intimately related to
  • Hash Functions ILL89,SZ94,GW94
  • Expander Graphs NZ93, WZ93, GW94, RVW00, TUZ01,
    CRVW02
  • Samplers G97, Z97
  • Pseudorandom Generators Trevisan 99,
  • Error-Correcting Codes T99, TZ01, TZS01, SU01,
    U02
  • Ergodic Theory Lindenstrauss 07
  • Exponential sums? Unify the theory of
    pseudorandomness.

5
Definitions
6
Weak random sources
  • Distributions X on 0,1n with some entropy
  • vN sources n coins of unknown fixed bias
  • SV sources PrXi1 1X1b1,,Xibi ? (d,
    1-d)
  • Bit fixing n coins, some good, some sticky
  • ..
  • Z k-sources H8(X) k
  • ?x PrX x ? 2-k
  • e.g X uniform with support 2k
  • k the entropy in the weak source

7
Randomness Extractors(1st attempt)
weak random source X k can be e.g n/2, vn, log
n,
X k-source of length n
EXT
m lt k
m almost-uniform bits
X
  • Ext 0,1n ? 0,1m
  • Impossible even if kn-1 and m1

8
Extractors Nisan Zuckerman 93
X
k-source of length n
EXT
i ? 0,1d
m bits ?-close to uniform
  • Exti 0,1n ? 0,1m i ? 0,1d
    D
  • ? k-source X,
  • ? but ?-fraction of is, Exti(X) Um1
    lt ?

9
Probabilistic algorithms with weak random bits
k-source of length n
Where from?
Efficient?
Try all possible D2d indices. Take majority
vote.
m random bits
(upto ? L1 error)
Probabilistic algorithm
Input
Output
?
Error prob ltd
Want efficient Ext, small d, ? , large m
10
Extractors - Parameters
k-source of length n
(short) seed
EXT
d random bits
m bits ?-close to uniform
  • Goals minimize d, maximize m.
  • Non-constructive optimal Sip88,NZ93,RT97
  • Seed length d log n O(1).
  • Output length m k - O(1).
  • ? 0.01
  • k ? n/2

11
Explicit Constructions
  • Non-constructive optimal Sip88,NZ93,RT97
  • Seed length d log n O(1).
  • Output length m k - O(1).
  • ...B86,SV86,CG87, NZ93, WZ93, GW94, SZ94, SSZ95,
    Zuc96, Ta96, Ta98, Tre99, RRV99a, RRV99b, ISW00,
    RSW00, RVW00, TUZ01, TZS01, SU01, LRVW03,
  • New explicit constructions GUV07, DW08 - Seed
    length d O(log n) even for ?1/n
  • Output length m .99k

12
Applications
13
Probabilistic algorithms with weak random bits
k-source of length n X
Efficient!
Try all D2d poly(n) strings. Take Majority vote
m random bits
(upto ?)
Probabilistic algorithm
Input
Output
?
Error prob ltd
The error set B? 0,1m of alg is sampled
accurately whp
14
Extractors as samplers
(k,?)-extractor Exti 0,1n ?0,1m i ?
0,1d D
Sampling Hashing Amplification Coding Expanders
?
Discrepancy For every B, for all but 2k of the
x? 0,1n Ext(X) ? B/D
- B/2m lt ?
15
Beating e-value expansion WZ
Task Construct an graph on N of minimal
degree DEG s.t. every two sets of size K are
connected by an edge.
N
Any such graph DEG gt N/K Ramanujan
graphs DEG lt (N/K)2 Random graphs DEG lt
(N/K)1o(1) Extractors DEG lt
(N/K)1o(1)
K
K
16
Extractors as expanders
(k,.01)-extractor Ext 0,1n ? 0,1d
?0,1m 2k K M1o(1) Ext N x
D ? M 2d D lt Mo(1)

N
M
Take G Ext2 on N DEG lt (N/K)1o(1) Many
edges between any two K-sets X,X
x i
Exti(x)
17
Extractors as list-decodable error-correcting
codes TZ
d c log n D 2d nc k 2d m 1
C 0,1n ? 0,1D
z
z

Polynomial rate! Efficient encoding!! Efficient
decoding?
Unique decoding Radius lt D/4 List decoding
Radius lt D/2 Can one get radius D/2 and small
list?
For z ? 0,1D let Bz ? 0,1d1 be the set
(i,zi) i ?D List decoding For every z,
at most KD2 of xs have C(x) fall in (1/2 -?)D
hamming ball around z
18
Constructions
19
Expanders as extractors
B/2m d
r1 r2 ri
rD
r1 r2. rD random G-path (n mO(D) random
bits)
Thm AKS,G Prr1 r2. rt ?B/D d gt ?
lt exp(-?2D) Thm Z Dcm2d, Exti(r1
r2. rD) ri is an (k.9n, ?)extractor of
dO(log n) seed (breaks down for k lt n/2)
20
Condensers RR99,RSW00,TUZ01
X k-source of length n
Con
.9k-source of length k
  • Thm Sufficient to construct such condensers
  • from here we can use Z extractor

21
Mergers T96
k k k
nks
X1 X2 XS
X
Mer
.9k-source
k
  • Some block Xi is random.
  • The other Xj are correlated arbitrarily with it.
  • Mer outputs a high entropy distribution.
  • Thm Sufficient to construct mergers!

22
Mergers
Xi?Fqk q n100 Some Xi is random
LRVW Mer a1X1a2X2asXs ai?Fq (
dslog q ) Mer is a random element in the
subspace spanned by Xis D It works! (proof of
the Wolf conjecture). But d large! DW Mer
a1(y)X1a2(y)X2as(y)Xs y?Fq ( dlog q )
Mer is a random element in the curve through
the Xis
23
The proof
x(x1, x2, , xs)
Deg(C) s-1
(Fq)k
B
B
C(x)
Mer(x)
Assume E C(X) ? B gt 2e B small
Prx C(x) ? Bgte gte
Q(Fq)k ? Fq Q(B)? 0, deg lteq/s
? Prx Q(C(x)) ? 0 gte
? Pr Q(xi) ? 0 gte
? Q ? 0
24
Open Problems
  • Find explicit extractors with
  • Seed length d 1log n O(1).
  • Output length m 1k - O(1).
  • Expand connections to Ergodic Theory and Number
    Theory
  • Find explicit bipartite
  • graph, of constant deg

25
Extractors - Parameters
k-source of length n
(short) seed
EXT
d random bits
m bits ?-close to uniform
  • Goals minimize d, ?, maximize m.
  • Non-constructive optimal Sip88,NZ93,RT97
  • Seed length d log(n-k) 2 log 1/? O(1).
  • Output length m k d - 2 log 1/? - O(1).
Write a Comment
User Comments (0)
About PowerShow.com