Heaps%20and%20basic%20data%20structures - PowerPoint PPT Presentation

About This Presentation
Title:

Heaps%20and%20basic%20data%20structures

Description:

Title: PowerPoint Presentation Last modified by: Dave Created Date: 1/1/1601 12:00:00 AM Document presentation format: On-screen Show Other titles – PowerPoint PPT presentation

Number of Views:161
Avg rating:3.0/5.0
Slides: 120
Provided by: pom74
Learn more at: https://cs.pomona.edu
Category:

less

Transcript and Presenter's Notes

Title: Heaps%20and%20basic%20data%20structures


1
Heaps and basic data structures
  • David Kauchak
  • cs161
  • Summer 2009

2
Administrative
  • Homework 2 due date extended to Fri. 7/10 at 5pm
  • Midterm
  • 7/20 in class. Closed book, etc.
  • Review sessions
  • SCPD students
  • Discussion board thanks ?

3
Quicksort partitions the good vs. the bad
4
Quicksort average case take 2
cn
bad split
good 50/50 split
We absorb the bad partition. In general, we
can absorb any constant number of bad partitions
5
Quicksort partitions the good vs. the bad
  • For Quicksort to absorb the cost of bad
    partitions, as n grows, the proportion of bad to
    good partitions cannot grow
  • Why?
  • If as we increase the size of n, we
    proportionately increase the number of good and
    bad partitions, then there is still a constant
    number of bad partitions to be absorbed by a
    given good partition
  • If, however, as we increase n the proportion of
    bad partitions increases, then we can no longer
    absorb the cost since of the bad partitions
    since it depends on n

6
Decision-tree model
  • Full binary tree representing the comparisons
    between elements by a sorting algorithm
  • Internal nodes contain indices to be compared
  • Leaves contain a complete permutation of the
    input
  • Tracing a path from root to leave gives the
    correct reordering/permutation of the input for
    an input

13

gt
1,3,2
3, 12, 7
3, 7, 12
1,3,2
2,1,3
3, 7, 12
7, 3, 12
7
Comparison-based sorting
  • Sorted order is determined based only on a
    comparison between input elements
  • Ai lt Aj
  • Ai gt Aj
  • Ai Aj
  • Ai Aj
  • Ai Aj
  • This is why most built-in sorting approaches only
    require you to define the comparison operator
    (i.e. compareTo in Java)
  • Can we do better than O(n log n)?

8
A decision tree model
12

gt
13
23

gt

gt
2,1,3
13
23
1,2,3

gt

gt
1,3,2
3,1,2
2,3,1
3,2,1
9
A decision tree model
12

gt
13
23

gt

gt
2,1,3
13
23
1,2,3

gt

gt
1,3,2
3,1,2
2,3,1
3,2,1
12, 7, 3
10
A decision tree model
12

gt
13
23

gt

gt
2,1,3
13
23
1,2,3

gt

gt
1,3,2
3,1,2
2,3,1
3,2,1
12, 7, 3
Is 12 7 or is 12 gt 7?
11
A decision tree model
12

gt
13
23

gt

gt
2,1,3
13
23
1,2,3

gt

gt
1,3,2
3,1,2
2,3,1
3,2,1
12, 7, 3
Is 12 3 or is 12 gt 3?
12
A decision tree model
12

gt
13
23

gt

gt
2,1,3
13
23
1,2,3

gt

gt
1,3,2
3,1,2
2,3,1
3,2,1
12, 7, 3
Is 12 3 or is 12 gt 3?
13
A decision tree model
12

gt
13
23

gt

gt
2,1,3
13
23
1,2,3

gt

gt
1,3,2
3,1,2
2,3,1
3,2,1
12, 7, 3
Is 12 3 or is 12 gt 3?
14
A decision tree model
12

gt
13
23

gt

gt
2,1,3
13
23
1,2,3

gt

gt
1,3,2
3,1,2
2,3,1
3,2,1
12, 7, 3
Is 7 3 or is 7 gt 3?
15
A decision tree model
12

gt
13
23

gt

gt
2,1,3
13
23
1,2,3

gt

gt
1,3,2
3,1,2
2,3,1
3,2,1
12, 7, 3
Is 7 3 or is 7 gt 3?
16
A decision tree model
12

gt
13
23

gt

gt
2,1,3
13
23
1,2,3

gt

gt
1,3,2
3,1,2
2,3,1
3,2,1
3, 2, 1
12, 7, 3
17
A decision tree model
12

gt
13
23

gt

gt
2,1,3
13
23
1,2,3

gt

gt
1,3,2
3,1,2
2,3,1
3,2,1
3, 2, 1
3, 7, 12
12, 7, 3
18
A decision tree model
12

gt
13
23

gt

gt
2,1,3
13
23
1,2,3

gt

gt
1,3,2
3,1,2
2,3,1
3,2,1
7, 12, 3
19
A decision tree model
12

gt
13
23

gt

gt
2,1,3
13
23
1,2,3

gt

gt
1,3,2
3,1,2
2,3,1
3,2,1
7, 12, 3
20
A decision tree model
12

gt
13
23

gt

gt
2,1,3
13
23
1,2,3

gt

gt
1,3,2
3,1,2
2,3,1
3,2,1
7, 12, 3
21
A decision tree model
12

gt
13
23

gt

gt
2,1,3
13
23
1,2,3

gt

gt
1,3,2
3,1,2
2,3,1
3,2,1
7, 12, 3
22
A decision tree model
12

gt
13
23

gt

gt
2,1,3
13
23
1,2,3

gt

gt
1,3,2
3,1,2
2,3,1
3,2,1
7, 12, 3
23
A decision tree model
12

gt
13
23

gt

gt
2,1,3
13
23
1,2,3

gt

gt
1,3,2
3,1,2
2,3,1
3,2,1
3, 7, 12
7, 12, 3
24
How many leaves are in a decision tree?
  • Leaves must have all possible permutations of the
    input
  • Input of size n, n! leaves
  • What if decision tree model didnt?
  • Some input would exist that didnt have a correct
    reordering

25
A lower bound
  • What is the worst-case number of comparisons for
    a tree?

12

gt
13
23

gt

gt
2,1,3
13
23
1,2,3

gt

gt
1,3,2
3,1,2
2,3,1
3,2,1
26
A lower bound
  • The longest path in the tree, i.e. the height

12

gt
13
23

gt

gt
2,1,3
13
23
1,2,3

gt

gt
1,3,2
3,1,2
2,3,1
3,2,1
27
A lower bound
  • What is the maximum number of leaves a binary
    tree of height h can have?
  • A complete binary tree has 2h leaves

log is monotonically increasing
from hw1 ?
28
Can we do better than O(n logn) for sorting?
  • What if I told you the maximum value k that any
    number could take
  • and k O(n)
  • In some situation (like above) we can sort in
    T(n)
  • counting sort
  • radix sort
  • bucket sort
  • Leverage additional knowledge about the data
    besides comparisons

29
Why dont we hear about these more?
  • Constants can be large and running times
    therefore may be larger for modest input sizes
  • Cache friendliness
  • Memory (Quicksort sorts in place)
  • Hardware considerations

30
Data Structures
  • What is a data structure?
  • Way of storing data that facilitates particular
    operations
  • Dynamic set operations For a set S
  • Search(S,k) Does k exist in S?
  • Insert(S,k) Add k to S
  • Delete(S,x) Given a pointer/reference, x, to an
    elkement, delete it from S
  • Min(S) Return the smallest element of S
  • Max(S) Return the largest element of S

31
Array
  • Sequential locations in memory in linear order
  • Elements are accessed via index
  • Cost of operations
  • Search(S,k)
  • Insert(S,k)
  • InsertIndex(S,k)
  • Delete(S,x)
  • Min(S)
  • Max(S)

O(n)
T(n)
T(1)
T(n)
T(n)
T(n)
32
Array
  • Uses?
  • constant time access of particular indices

33
Linked list
  • Elements are arranged linearly.
  • An element in list points to the next element in
    the list
  • Cost of operations
  • Search(S,k)
  • Insert(S,k)
  • InsertIndex(S,k)
  • Delete(S,x)
  • Min(S)
  • Max(S)

O(n)
T(1)
T(1)
O(n)
T(n)
T(n)
34
Linked list
  • Uses?
  • constant time insertion at the cost of linear
    time access

35
Double linked list
  • Elements are arranged linearly.
  • An element in list points to the next element and
    previous element in the list
  • What does the back link get us?
  • T(1) deletion

36
Stack
  • LIFO
  • Picture the stack of plates at a buffet
  • Can implement with an array or a linked list

37
Stack
top
  • LIFO
  • Picture the stack of plates at a buffet
  • Can implement with an array or a linked list

push(1)
push(2)
push(3)
pop()
3
pop()
2
pop()
1
38
Stack
  • Empty check if stack is empty
  • Array check if top is at index 0
  • Linked list check if top pointer is null
  • Runtime

T(1)
39
Stack
  • Pop removes the top element from the list
  • check if empty, if so, underflow
  • Array return element at top and decrement
    top
  • Linked list return and remove at front of linked
    list
  • Runtime
  • Push add an element to the list
  • Array increment top and insert element. Must
    check for overflow!
  • Linked list insert element at front of linked
    list
  • Runtime

T(1)
T(1)
40
Stack
  • Array or linked list?
  • Array more memory efficient
  • Linked list dont have to worry about overflow
  • Uses?
  • runtime stack
  • graph search algorithms (depth first search)
  • syntactic parsing (i.e. compilers)

41
Queue
head
tail
  • FIFO
  • Picture a line at the grocery store
  • Can implement with array or double linked list

Enqueue(1) Enqueue(2) Enqueue(3)
1 2 3
Dequeue() Dequeue() Dequeue()
42
Queue
  • Operations
  • Empty T(1)
  • Enqueue add element to end of queue - T(1)
  • Dequeue remove element from the front of the
    queue - T(1)
  • Uses?
  • scheduling
  • graph traversal (breadth first search)

43
Binary heap
  • A binary tree where the value of a parent is
    greater than or equal to the value of its
    children
  • Additional restriction all levels of the tree
    are complete except the last
  • Max heap vs. min heap

44
Binary heap - operations
  • Maximum(S) - return the largest element in the
    set
  • ExtractMax(S) Return and remove the largest
    element in the set
  • Insert(S, val) insert val into the set
  • IncreaseElement(S, x, val) increase the value
    of element x to val
  • BuildHeap(A) build a heap from an array of
    elements

45
Binary heap - pointers
parent child
all nodes in a heap are themselves heaps
complete tree
level does not indicate size
46
Binary heap - array
47
Binary heap - array
16 14 10 8 7 9 3 2 4 1
1 2 3 4 5 6 7 8 9 10
48
Binary heap - array
16 14 10 8 7 9 3 2 4 1
1 2 3 4 5 6 7 8 9 10
Left child of A3?
49
Binary heap - array
16 14 10 8 7 9 3 2 4 1
1 2 3 4 5 6 7 8 9 10
Left child of A3?
23 6
50
Binary heap - array
16 14 10 8 7 9 3 2 4 1
1 2 3 4 5 6 7 8 9 10
Parent of A8?
51
Binary heap - array
16 14 10 8 7 9 3 2 4 1
1 2 3 4 5 6 7 8 9 10
Parent of A8?
52
Binary heap - array
53
Identify the valid heaps
15, 12, 3, 11, 10, 2, 1, 7, 8
20, 18, 10, 17, 16, 15, 9, 14, 13
54
Heapify
  • Assume left and right children are heaps, turn
    current set into a valid heap

55
Heapify
  • Assume left and right children are heaps, turn
    current set into a valid heap

56
Heapify
  • Assume left and right children are heaps, turn
    current set into a valid heap

find out which is largest current, left of right
57
Heapify
  • Assume left and right children are heaps, turn
    current set into a valid heap

58
Heapify
  • Assume left and right children are heaps, turn
    current set into a valid heap

if a child is larger, swap and recurse
59
Heapify
16 3 10 8 7 9 5 2 4 1
1 2 3 4 5 6 7 8 9 10
3
60
Heapify
16 3 10 8 7 9 5 2 4 1
1 2 3 4 5 6 7 8 9 10
3
61
Heapify
16 8 10 3 7 9 5 2 4 1
1 2 3 4 5 6 7 8 9 10
8
62
Heapify
16 8 10 3 7 9 5 2 4 1
1 2 3 4 5 6 7 8 9 10
8
63
Heapify
16 8 10 4 7 9 5 2 3 1
1 2 3 4 5 6 7 8 9 10
8
64
Heapify
16 8 10 4 7 9 5 2 3 1
1 2 3 4 5 6 7 8 9 10
8
65
Heapify
16 8 10 4 7 9 5 2 3 1
1 2 3 4 5 6 7 8 9 10
8
66
Correctness of Heapify
  • Remember both the children are valid heaps
  • Three cases
  • Case 1 Ai (current node) is the largest
  • parent is greater than both children
  • both children are heaps
  • current node is a valid heap

67
Correctness of heapify
  • Case 2 left child is the largest
  • When Heapify returns
  • Left child is a valid heap
  • Right child is unchanged and therefore a valid
    heap
  • Current node is larger than both children since
    we selected the largest node of current, left and
    right
  • current node is a valid heap
  • Case 3 right child is largest
  • similar to above

68
Running time of Heapify
  • What is the cost of each call to Heapify?
  • T(1)
  • How many calls are made to Heapify?
  • O(height of the tree)
  • What is the height of the tree?
  • Complete binary tree, except for the last level

O(log n)
69
Binary heap - operations
  • Maximum(S) - return the largest element in the
    set
  • ExtractMax(S) Return and remove the largest
    element in the set
  • Insert(S, val) insert val into the set
  • IncreaseElement(S, x, val) increase the value
    of element x to val
  • BuildHeap(A) build a heap from an array of
    elements

70
Maximum
  • Return the largest element from the set
  • Return A1

71
ExtractMax
  • Return and remove the largest element in the set

72
ExtractMax
  • Return and remove the largest element in the set

?
73
ExtractMax
  • Return and remove the largest element in the set

?
74
ExtractMax
  • Return and remove the largest element in the set

?
75
ExtractMax
  • Return and remove the largest element in the set

?
76
ExtractMax
  • Return and remove the largest element in the set

77
ExtractMax
  • Return and remove the largest element in the set

Heapify
78
ExtractMax
  • Return and remove the largest element in the set

79
ExtractMax running time
  • Constant amount of work plus one call to Heapify
    O(log n)

80
IncreaseElement
  • Increase the value of element x to val

15
81
IncreaseElement
  • Increase the value of element x to val

15
82
IncreaseElement
  • Increase the value of element x to val

15
8
83
IncreaseElement
  • Increase the value of element x to val

15
84
IncreaseElement
  • Increase the value of element x to val

14
85
IncreaseElement
  • Increase the value of element x to val

86
Correctness of IncreaseElement
  • Why is it ok to swap values with parent?

87
Correctness of IncreaseElement
  • Stop when heap property is satisfied

88
Running time of IncreaseElement
  • Follows a path from a node to the root
  • Worst case O(height of the tree)
  • O(log n)

89
Insert
  • Insert val into the set

6
90
Insert
  • Insert val into the set

6
91
Insert
  • Insert val into the set

propagate value up
6
92
Insert
93
Running time of Insert
  • Constant amount of work plus one call to
    IncreaseElement O(log n)

94
Building a heap
  • Can we build a heap using the functions we have
    so far?
  • Maximum(S)
  • ExtractMax(S)
  • Insert(S, val)
  • IncreaseElement(S, x, val)

95
Building a heap
96
Running time of BuildHeap1
  • n calls to Insert O(n log n)
  • Can we get a better bound?


97
Building a heap take 2
  • Start with n/2 simple heaps
  • call Heapify on element n/2-1, n/2-2, n/2-3
  • all children have smaller indices
  • building from the bottom up, makes sure that all
    the children are heaps

98
4 1 3 2 16 9 10 14 8 7
1 2 3 4 5 6 7 8 9 10
4
1
3
16
9
10
14
8
7
99
heapify
4 1 3 2 16 9 10 14 8 7
1 2 3 4 5 6 7 8 9 10
4
1
3
16
9
10
14
8
7
100
heapify
4 1 3 2 16 9 10 14 8 7
1 2 3 4 5 6 7 8 9 10
4
1
3
16
9
10
14
8
7
101
heapify
4 1 3 14 16 9 10 2 8 7
1 2 3 4 5 6 7 8 9 10
4
1
3
14
16
9
10
2
8
7
102
heapify
4 1 3 14 16 9 10 2 8 7
1 2 3 4 5 6 7 8 9 10
4
1
3
14
16
9
10
2
8
7
103
heapify
4 1 10 14 16 9 3 2 8 7
1 2 3 4 5 6 7 8 9 10
4
1
10
14
16
9
3
2
8
7
104
heapify
4 1 10 14 16 9 3 2 8 7
1 2 3 4 5 6 7 8 9 10
4
1
10
14
16
9
3
2
8
7
105
heapify
4 16 10 14 7 9 3 2 8 1
1 2 3 4 5 6 7 8 9 10
4
16
10
14
7
9
3
2
8
1
106
heapify
4 16 10 14 7 9 3 2 8 1
1 2 3 4 5 6 7 8 9 10
4
16
10
14
7
9
3
2
8
1
107
heapify
16 14 10 8 7 9 3 2 4 1
1 2 3 4 5 6 7 8 9 10
16
14
10
8
7
9
3
2
4
1
108
Correctness of BuildHeap2
  • Invariant

109
Correctness of BuildHeap2
  • Invariant elements Ai1n are all heaps
  • Base case i floor(n/2). All elements i1,
    i2, , n are simple heaps
  • Inductive case We know i1, i2, .., n are all
    heaps, therefore the call to Heapify(A,i)
    generates a heap at node i
  • Termination?

110
Running time of BuildHeap2
  • n/2 calls to Heapify O(n log n)
  • Can we get a tighter bound?

111
Running time of BuildHeap2
all nodes at the same level will have the same
cost
How many nodes are at level d?
2d
112
Running time of BuildHeap2
?
113
Nodes at height h
h
lt ceil(n/2h1) nodes
lt ceil(n/8) nodes
h2
lt ceil(n/4) nodes
h1
lt ceil(n/2) nodes
h0
114
Running time of BuildHeap2
115
BuildHeap1 vs. BuildHeap2
  • Runtime
  • Both O(n)
  • BuildHeap2 may have smaller constants (only n/2
    calls)
  • Memory
  • Both O(n)
  • BuildHeap1 requires an additional array, i.e. 2n
    memory
  • Complexity/Ease of implementation

116
Heap uses
  • Heapsort
  • Build a heap
  • Call ExtractMax for all the elements
  • O(n log n) running time
  • Priority queues
  • scheduling tasks jobs, processes, network
    traffic
  • A search algorithm

117
Other heaps
118
Other heaps
119
Other heaps
Write a Comment
User Comments (0)
About PowerShow.com