Title: Zwick
1Zwicks Conjectureis implied by most of Khots
Conjectures
(aka, Conditional hardness for satisfiable
3-CSPs)
Ryan ODonnell Yi Wu Carnegie Mellon University
2- Zwicks Conjecture 1997
- NP ? naPCP1,5/8?(O(log n), 3).
- Every language in NP has a probabilistically
checkable proof system of polynomial size in
which the verifier queries 3 bits of the proof
nonadaptively, accepts correct proofs with
probability 1, and accepts incorrect proofs with
probability at most 5/8?.
For all ? gt 0,
3- Zwicks Conjecture 1997
- NP ? naPCP1,5/8?(O(log n), 3).
- Given a satisfiable 3CSP, its NP-hard to
satisfy 5/8? of the constraints.
4 5- Zwicks Conjecture 1997
- NP ? naPCP1,5/8?(O(log n), 3).
- 3 minimal.
- 1 natural, for proof systems.
- na natural, for CSP
inapproximability. - 5/8 this is the conjecture.
6- Approximating Satisfiable 3CSPs
NP-hard
In BPP
0
1
1/8
Cook71
Johnson73
7- Approximating Satisfiable 3CSPs
NP-hard
In BPP
1/8
.999999
AS92,ALMSS92
Johnson73
8- Approximating Satisfiable 3CSPs
NP-hard
In BPP
.299
.8999
BGS95
BGS95
9- Approximating Satisfiable 3CSPs
NP-hard
In BPP
.367
.8999
TSSW96
BGS95
10- Approximating Satisfiable 3CSPs
NP-hard
In BPP
.367
3/4?
HĂĄstad97
TSSW96
11- Approximating Satisfiable 3CSPs
NP-hard
In BPP
.514
3/4?
HĂĄstad97
Trevisan97
12- Approximating Satisfiable 3CSPs
NP-hard
In BPP
5/8
3/4?
HĂĄstad97
Zwick97
13- Zwicks Conjecture 1997
- NP ? naPCP1,5/8?(O(log n), 3).
- Given a satisfiable 3CSP, its NP-hard to
satisfy 5/8? of the constraints.
14- Approximating Satisfiable 3CSPs
NP-hard
In BPP
5/8
3/4?
HĂĄstad97
Zwick97
15- Approximating Satisfiable 3CSPs
NP-hard
In BPP
5/8
20/27?
KS06
Zwick97
16- Approximating Satisfiable 3CSPs
NP-hard
Assuming any Khot D-to-1 Conjecture
In BPP
5/8
20/27?
KS06
Zwick97
OW09
17- Remind me of Khots D-to-1 Conjectures?
18- Label-Cover
- p1(V1) U4p2(V3) U2p3(V3) U9p4(V2) U4
-
Ui vbls over m
Input
Vi vbls over Dm
pj maps are D-to-1
Razs Theorem ? d gt 0, if m
poly(1/d) and D poly(1/d), then NP-hard to
tell satble from d-satble.
19- Label-Cover
- p1(V1) U4p2(V3) U2p3(V3) U9p4(V2) U4
-
Ui vbls over m
Input
Vi vbls over Dm
pj maps are D-to-1
2-to-1 Conjecture Khot02 ? d gt 0,
if m poly(1/d) and D 2, then NP-hard
to tell satble from d-satble.
20- Label-Cover
- p1(V1) U4p2(V3) U2p3(V3) U9p4(V2) U4
-
Ui vbls over m
Input
Vi vbls over Dm
pj maps are D-to-1
3-to-1 Conjecture Khot02 ? d gt 0,
if m poly(1/d) and D 3, then NP-hard
to tell satble from d-satble.
21- Label-Cover
- p1(V1) U4p2(V3) U2p3(V3) U9p4(V2) U4
-
Ui vbls over m
Input
Vi vbls over Dm
pj maps are D-to-1
100-to-1 Conjecture Khot02 ? d
gt 0, if m poly(1/d) and D 100,
then NP-hard to tell satble from d-satble.
22- Label-Cover
- p1(V1) U4p2(V3) U2p3(V3) U9p4(V2) U4
-
Ui vbls over m
Input
Vi vbls over Dm
pj maps are D-to-1
Unique Games Conjecture Khot02 ? d gt 0,
if m poly(1/d) and D 1, NP-hard to tell
(1-d)-satble from d-satble.
23- Conjectures
- 2-to-1 ? 3-to-1 ? 4-to-1 ?
- ? 100-to-1 ?
- ? poly(1/d)-to-1 (true)
- None known comparable with UGC.
24- Why not use Raghavendra08?
- UGC-based, hence cant address theory of
satisfiable instances - Shows Alg/UGC-hard match at some number
but what is the number?
25- Why not use Raghavendra08?
- Shows Alg/UGC-hard match at some number
but what is the number? - UGC-based, hence cant address theory of
satisfiable instances
26- Challenges
- Shows Alg/UGC-hard match at some number
but what is the number? - UGC-based, hence cant address theory of
satisfiable instances
? Design a 1 vs. 5/8 Dictator Test for D-to-1
? Overcome perfect correlation, pairwise
dependence in Invariance Principle arguments
27If you can design a Dictator Test that
seems to work you
can make it work.
28 Design a 1 vs. 5/8 Dictator Test for D-to-1
Overcome perfect correlation, pairwise
dependence in Invariance Principle arguments
29 Design a 1 vs. 5/8 Dictator Test for D-to-1
Overcome perfect correlation, pairwise
dependence in Invariance Principle arguments
30- Designing a 1 vs. 5/8 Dictator Test
- Q Why is Zwicks 3CSP alg. stuck at 5/8?
- A The Not-Two predicate
Linear/random 5/8 SDP alg 5/8
31- Designing a 1 vs. 5/8 Dictator Test
- Q (HĂĄstad01) 1 vs. 5/8? hardness for NTW?
- The Not-Two predicate
32- Designing a 1 vs. 5/8 Dictator Test
- Q (HĂĄstad01) 1 vs. 5/8? hardness for NTW?
- A (Our main thm.) Yes, assuming D-to-1 Conj.
- for any const. D lt 8.
-
33- Designing a 1 vs. 5/8 Dictator Test
- HĂĄs97 gave a 1-? vs. 1/2? Dictator Test
for D-to-1, D arbitrary, using XOR. - We give a 1 vs. 5/8? Dictator
Test for D-to-1, D constant, using NTW. -
34- D-to-1 Dictator Tests using F
- Somehow pick corrd strings x?0,1m,
y,z?0,1Dm. - Test whether F( f(x), g(y), g(z) ).
m
f (
x
1
0
1
1
0
g (
y
1
0
0
0
1
1
0
0
0
0
1
0
0
0
1
g (
z
1
0
0
0
0
0
0
1
0
1
1
0
1
0
0
D 3
35- D-to-1 Dictator Tests using F
- Completeness
- If f is ith Dictator, g is jth Dictator,
j matches i, then Prx,y,z F( f(x),
g(y), g(z) ) c. - Soundness
- If f and g odd, T1-? f and T1-? g have no
matching influential variables in common,
then Prx,y,z F( f(x), g(y), g(z) ) s?.
36-
- Completeness
- If f is ith Dictator, g is jth Dictator,
j matches i, then Prx,y,z F( f(x),
g(y), g(z) ) c. - Soundness
- If f and g odd, T1-? f and T1-? g have no
matching influential variables in common,
then Prx,y,z F( f(x), g(y), g(z) ) s?.
HĂĄstad F XOR, c 1-?, s 1/2
37-
- Completeness
- If f is ith Dictator, g is jth Dictator,
j matches i, then Prx,y,z F( f(x),
g(y), g(z) ) c. - Soundness
- If f and g odd, T1-? f and T1-? g have no
matching influential variables in common,
then Prx,y,z F( f(x), g(y), g(z) ) s?.
Us F NTW, c 1, s 5/8
38- HĂĄstads Dictator Test using XOR
- Somehow pick corrd strings x?0,1m,
y,z?0,1Dm. - Test whether XOR( f(x), g(y), g(z) ).
m
f (
x
1
0
1
1
0
g (
y
1
0
0
0
1
1
0
0
0
0
1
0
0
0
1
g (
z
1
0
0
0
0
0
0
1
0
1
1
0
1
0
0
D 3
39- HĂĄstads Dictator Test using XOR
- Pick blocks from some dist. on 0,1 x 0,1D x
0,1D. - Test whether XOR( f(x), g(y), g(z) ).
m
f (
x
1
0
1
1
0
g (
y
1
0
0
0
1
1
0
0
0
0
1
0
0
0
1
g (
z
1
0
0
0
0
0
0
1
0
1
1
0
1
0
0
D 3
40- HĂĄstads Dictator Test using XOR
- Blocks x1, y1,y2,,yD unif. random, zi
x1?yi?1. - Test whether XOR( f(x), g(y), g(z) ).
m
f (
x
1
0
1
1
0
g (
y
1
0
0
0
1
1
0
0
0
0
1
0
0
0
1
g (
z
1
0
0
0
0
0
0
1
0
1
1
0
1
0
0
D 3
41- HĂĄstads Dictator Test using XOR
- Blocks x1, y1,y2,,yD unif. random, zi
x1?yi?1. - Tweak Rerandomize each zi with prob. 2?.
m
f (
x
1
0
1
1
0
g (
y
1
0
0
0
1
1
0
0
0
0
1
0
0
0
1
g (
z
1
0
0
0
0
0
0
1
0
1
1
0
1
0
1
D 3
42-
- Completeness
- If f is ith Dictator, g is jth Dictator,
j matches i, then Prx,y,z F( f(x),
g(y), g(z) ) c. - Soundness
- If f and g odd, T1-? f and T1-? g have no
matching influential variables in common,
then Prx,y,z F( f(x), g(y), g(z) ) s?.
HĂĄstad F XOR, c 1-?, s 1/2
43-
- Completeness
- Each column (xi,yj,zj) satisfies XOR w.p.
1-?. -
- Soundness
- If f and g odd, T1-? f and T1-? g have no
matching influential variables in common,
then Prx,y,z F( f(x), g(y), g(z) ) s?.
HĂĄstad F XOR, c 1-?, s 1/2
44-
- Completeness
- Each column (xi,yj,zj) satisfies XOR w.p.
1-?. -
- Soundness
- Seems like it should work. If f g
Majority, or f g Parity then Prx,y,z
XOR( f(x), g(y), g(z) ) 1/2o(1).
HĂĄstad F XOR, c 1-?, s 1/2
45- HĂĄstads Dictator Test using XOR
- At a technical level
-
- HĂĄstad does direct Fourier Analysis.
- We sketch an Invariance Principle proof which
works for D O(1). - (Have to reprove MOO05,Mos08.)
46- HĂĄstads Dictator Test using XOR
- Blocks x1, y1,y2,,yD unif. random, zi
x1?yi?1. - Tweak Rerandomize each zi with prob. 2?.
- Within a block, imperfect correlation between x
(y,z). - So E f(x) g(y) g(z) E Tf(x) Tg(y)
Tg(z) .
f (
x
1
0
1
1
0
g (
y
1
0
0
0
1
1
0
0
0
0
1
0
0
0
1
g (
z
1
0
0
0
0
0
0
1
0
1
1
0
1
0
1
47- HĂĄstads Dictator Test using XOR
- Blocks x1, y1,y2,,yD unif. random, zi
x1?yi?1. - Tweak Rerandomize each zi with prob. 2?.
- Invariance Tf, Tg have no matching influential
vbl. - ? can change dist. to anything w/ same 2-wise
corrs.
f (
x
1
0
1
1
0
g (
y
1
0
0
0
1
1
0
0
0
0
1
0
0
0
1
g (
z
1
0
0
0
0
0
0
1
0
1
1
0
1
0
1
48- HĂĄstads Dictator Test using XOR
- Blocks x1, y1,y2,,yD unif. random, zi
x1?yi?1. - Then rerandomize x1.
- Tweak Rerandomize each zi with prob. 2?.
- E Tf(x) Tg(y) Tg(z) E Tf(x) E Tg(y)
Tg(z) 0.
f (
x
1
1
0
1
1
g (
y
1
0
0
0
1
1
0
0
0
0
1
0
0
0
1
g (
z
1
0
0
0
0
0
0
1
0
1
1
0
1
0
1
49-
- Completeness
- Each column (xi,yj,zj) satisfies XOR w.p.
1-?. -
- Soundness
- Seems like it should work. If f g
Majority, or f g Parity then E f(x)
g(y) g(z) 0.
HĂĄstad F XOR, c 1-?, s 1/2
50-
- Completeness
- Each column (xi,yj,zj) satisfies NTW w.p. 1.
-
- Soundness
- Seems like it should work. If f g
Majority, or f g Parity then E f(x)
g(y) g(z) 0.
Us F NTW, c 1, s 5/8
51- HĂĄstads Dictator Test using XOR
- Blocks x1, y1,y2,,yD unif. random, zi
x1?yi?1. - For NTW completeness, okay if column is (0,0,0).
f (
x
1
0
1
1
0
g (
y
1
0
0
0
1
1
0
0
0
0
1
0
0
0
1
g (
z
1
0
0
0
0
0
0
1
0
1
1
0
1
0
0
52- Our Dictator Test using NTW
- Blocks x1, y1,y2,,yD unif. random, zi
x1?yi?1. - Tweak W.p. ?, make a random column all x1.
f (
x
1
0
1
1
0
g (
y
1
0
0
0
1
1
0
0
0
0
1
0
0
0
1
g (
z
1
0
0
0
0
0
0
1
0
1
1
0
1
0
0
53- Our Dictator Test using NTW
- Blocks x1, y1,y2,,yD unif. random, zi
x1?yi?1. - Tweak W.p. ?, make a random column all
x1. - Unfortunately perfect correlation between x
(y,z). - (Even for D 2. Imperfect for D 1, hence
OW09a.)
f (
x
1
0
1
1
0
g (
y
1
0
1
0
1
1
0
0
0
0
1
0
0
0
1
g (
z
1
0
1
0
0
0
0
1
0
1
0
0
1
0
0
54- Our Dictator Test using NTW
- Blocks x1, y1,y2,,yD unif. random, zi
x1?yi?1. - Tweak W.p. ?, make a random column all
x1. - Escape hatch imperfect correlation between
(x,y) z. - So E f(x) g(y) g(z) E f(x) g(y) Tg(z)
.
f (
x
1
0
1
1
0
g (
y
1
0
1
0
1
1
0
0
0
0
1
0
0
0
1
g (
z
1
0
1
0
0
0
0
1
0
1
0
0
1
0
0
55- Our Dictator Test using NTW
- Blocks x1, y1,y2,,yD unif. random, zi
x1?yi?1. - Tweak W.p. ?, make a random column all
x1. - Escape hatch imperfect correlation between
(x,y) z. - So E f(x) g(y) g(z) E f(x) Tg(y) Tg(z)
.
f (
x
1
0
1
1
0
g (
y
1
0
1
0
1
1
0
0
0
0
1
0
0
0
1
g (
z
1
0
1
0
0
0
0
1
0
1
0
0
1
0
0
56- Our Dictator Test using NTW
- Blocks x1, y1,y2,,yD unif. random, zi
x1?yi?1. - Tweak W.p. ?, make a random column all
x1. - So E f(x) g(y) g(z) E f(x) Tg(y) Tg(z)
. - Now noise on (y,z) ? as if imperfect corr. for
x (y,z).
f (
x
1
0
1
1
0
g (
y
1
0
1
0
1
1
0
0
0
0
1
0
0
0
1
g (
z
1
0
1
0
0
0
0
1
0
1
0
0
1
0
0
57- Our Dictator Test using NTW
- Blocks x1, y1,y2,,yD unif. random, zi
x1?yi?1. - Tweak W.p. ?, make a random column all
x1. - So E f(x) g(y) g(z) E f(x) Tg(y) Tg(z)
. - E Tf(x)
Tg(y) Tg(z) .
f (
x
1
0
1
1
0
g (
y
1
0
1
0
1
1
0
0
0
0
1
0
0
0
1
g (
z
1
0
1
0
0
0
0
1
0
1
0
0
1
0
0
58- Our Dictator Test using NTW
- Blocks x1, y1,y2,,yD unif. random, zi
x1?yi?1. - Tweak W.p. ?, make a random column all
x1. - Invariance Tf, Tg have no matching
influential vbl. - ? can change dist. to anything w/ same 2-wise
corrs.
f (
x
1
0
1
1
0
g (
y
1
0
1
0
1
1
0
0
0
0
1
0
0
0
1
g (
z
1
0
1
0
0
0
0
1
0
1
0
0
1
0
0
59- Our Dictator Test using NTW
- Blocks x1, y1,y2,,yD unif. random, zi
x1?yi?1. - Then rerandomize x1.
- Tweak W.p. ?, make a random column all
x1. - E Tf(x) Tg(y) Tg(z) E Tf(x) E Tg(y)
Tg(z) 0.
f (
x
0
0
0
1
0
g (
y
1
0
0
0
1
1
0
0
0
0
1
0
0
0
1
g (
z
1
0
0
0
0
0
0
1
0
1
0
0
1
0
0
60If you can design a Dictator Test that
seems to work you
can make it work.
61- Open technical problems
- We need 1 vs. 2-2O(D2) hardness for D-to-1.
Probably could get away with 2-poly(D). With
1/poly(D)? - Use D-to-1 for other problems.Max-NAE3 with
perfect completeness?