Gauss - PowerPoint PPT Presentation

About This Presentation
Title:

Gauss

Description:

Gauss Divergence D.ds = r dv .D = r(r) By Engr. Mian Shahzad Iqbal Lecturer, Telecom Department University of Engineering and Technology – PowerPoint PPT presentation

Number of Views:157
Avg rating:3.0/5.0
Slides: 18
Provided by: Murr51
Category:
Tags: gauss

less

Transcript and Presenter's Notes

Title: Gauss


1
Gauss Divergence òòD.ds òòò r dv Ñ.D
r(r)
  • By
  • Engr. Mian Shahzad Iqbal
  • Lecturer, Telecom Department
  • University of Engineering and Technology
  • Taxila

2
GaussDivergence why, oh why??
  • òòD.ds òòòr(r)dv is clearly a useful means of
    calculating D and E from a macroscopic
    (i.e.sizeable!) distribution of charge
  • It relates charge density in a volume of space to
    the field that it creates
  • We will want a relationship between charge
    density at a point r(r) and the fields E(r) and
    D(r) that it creates at that point
  • (honest, we will!)

Cut to the chase
3
Proof (non-examinable)
Surface for Integration
D,E
4
Proof (non-examinable)
Argh!! I am shrinking!!!
5
Proof (non-examinable)
6
Proof (non-examinable)
D,E
7
Proof (non-examinable)
dy
dx
D,E
dz
8
Proof (non-examinable)
dy
dx
D,E
dz
9
Proof (non-examinable)
dy
dx
D,E
dz
10
Proof (non-examinable)
dy
SKIP MATHS
dx
D,E
dz
11
Now the maths
  • Assume that, for example,D (Dx,Dy,Dz) over the
    entire left hand face, the back face and the
    bottom face all the faces that meet at the
    origin
  • D is different on the other 3 faces
  • Front face D (DxDx,Dy,Dz)
  • Right face D (Dx,DyDy,Dz)
  • Top face D (Dx,Dy,DzDz)

12
Now the maths
  • Left face D (Dx,Dy,Dz)
  • ds (0, -dxdz, 0)
  • Right face D (Dx,DyDy,Dz)
  • ds (0, dxdz, 0)
  • Bottom face D (Dx,Dy,Dz)
  • ds (0, 0, -dxdy)
  • Top face D (Dx,Dy,DzDz)
  • ds (0, 0, dxdy)
  • Back face D (Dx,Dy,Dz)
  • ds (-dydz, 0, 0)
  • Front face D (DxDx,Dy,Dz)
  • ds (dydz, 0, 0)

13
Now the maths
  • òòD.ds (Dx,Dy,Dz).(0, -dxdz, 0)
    (Dx,Dy,Dz).(0, 0, -dxdy) (Dx,Dy,Dz).(-dydz,
    0, 0) (DxDx,Dy,Dz).(dydz, 0, 0)
    (Dx,DyDy,Dz).(0, dxdz, 0) (Dx,Dy,DzDz).(0,
    0, dxdy)

14
Now the maths
  • òòD.ds -Dydxdz Dzdxdy Dxdydz
    (DxDx)dydz (DyDy)dxdz (DzDz)dxdy
  • -Dydxdz Dzdxdy Dxdydz (Dx
    dxDx/x) dydz (Dy dxDy/y)dxdz (Dz
    dxDz/z)dxdy

15
Now the maths
  • òòD.ds (dxDx/x) dydz (dxDy/y)dxdz
    (dxDz/z)dxdy
  • (Dx/x) dxdydz (Dy/y)dxdydz
    (Dz/z)dxdydz
  • (Dx/x) dv (Dy/y)dv (Dz/z)dv
  • òòD.ds (/x, /y, /z). (Dx,Dy, Dz) dv

16
Now the maths
  • òòD.ds (/x, /y, /z) .(Dx,Dy,Dz)dv
  • òòD.ds Ñ.D dv charge enclosed
  • Ñ.Ddv òòò r dv
  • for an infinitesimally small volume dv, r is
    constant
  • Ñ.Ddv r òòò dv rdv
  • Ñ.D r(r)
  • This is the differential, or at-a-point version
    of Gausss law, often called the Divergence
    Theorem
  • (/x, /y, /z) Ñ is the Divergence Operator

17
Gausss Law/Divergence Theorem
  • òòD.ds òòò r(r) dv
  • Ñ.D r(r)
  • These are equivalent
  • Ñ (/x, /y, /z)
Write a Comment
User Comments (0)
About PowerShow.com