Simple%20stochastic%20models%202 - PowerPoint PPT Presentation

About This Presentation
Title:

Simple%20stochastic%20models%202

Description:

Simple stochastic models 2 Continuous random variable X X can take values: - – PowerPoint PPT presentation

Number of Views:109
Avg rating:3.0/5.0
Slides: 21
Provided by: pola167
Category:

less

Transcript and Presenter's Notes

Title: Simple%20stochastic%20models%202


1
Simple stochastic models 2
2
Continuous random variable X
  • X can take values -? lt x lt ?
  • Cumulative probability distribution function
  • PX(x) P(X ? x)
  • Probability density function

3
Normal distribution
X normal(?,?), E(X) ?, V(X) ? 2
  • pdf

cpdf
4
?0, ?1
0.4
0.3
pdf
0.2
0.1
0
-4
-3
-2
-1
0
1
2
3
4
cpdf
x
5
Central limit theorem
  • Y X1 X2 Xn
  • Xi - independent, zero mean, equal variance V
  • If n is large then

normal(0,1)
6
Example students body heights
Histogram of students body heights versus normal
probability density function
160
165
170
175
180
185
190
195
200
205
7
Example children birth weights
Histogram of children birth weights versus normal
probability density function
-4
x 10
0
1000
2000
3000
4000
5000
6000
8
Binomial becomes normal
0.12
0.1
0.08
0.06
0.04
0.02
0
0
5
10
15
20
25
30
35
40
45
50
o binomial(0.5,50)
normal(25,3.5355)
9
How do we fit normal distribution to data ?
  • Data X1, X2, , Xn

10
  • How do we estimate parameters of distributions
    using data ?
  • How do we verify that data follow a given
    distribution ?

11
Characteristic function
  • X with pdf p(x)
  • characteristic function

12
Properties
13
Properties
YaXb, a,b - constants
14
Characteristic function of normal distribution
  • X normal(?,?),

15
Continuity theorem for characteristic functions
16
Two dimensional distributions
  • X, Y
  • Probability density function p(x,y)

Cumulative pdf
17
Independent random variables
  • X, Y independent
  • pXY(x,y)pX(x) pY(y)
  • Convolution integral ZXY

pZ pX pY
18
Convolution and characteristic functions
ZXY
19
Use of characteristic functions to prove Central
Limit Theorem
  • Y X1 X2 Xn

i1,2,n
so
and
20
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com