Title: Generating%20and%20harnessing%20photonic%20entanglement
1Generating and harnessing photonic entanglement
Geoff Pryde
Quantum Technology Lab
Rohan Dalton Michael Harvey Nathan Langford Till
Weinhold Jeremy OBrien Geoff Pryde Andrew White
www.quantinfo.org
Theory Colleagues
Stephen Bartlett Aggie Branczyk Michael
Bremner Jen Dodd Andrew Doherty Alexei
Gilchrist Gerard Milburn Michael Nielsen Tim Ralph
Funding
2 www.quantinfo.org
Till Weinhold
Gerard Milburn
Tim Ralph
3(No Transcript)
4Generating and harnessing photonic
entanglement Talk outline
- Qubits
- CNOT gate
- Quantum process tomography
- Generalized quantum measurements with
photons - Qutrits and Qudits
- Gaussian spatial modes
- Constructing and measuringqutrits
- Use in quantum bit commitment
53 Single qubits
? Two-qubit gates
6CSIGN gate
C
C
0
0
C
C
1
1
p
phase shift
T
T
0
0
T
T
1
1
7CSIGN gate
-1/3
1/3
1/3
Ralph, Langford, Bell White, PRA 65, 062324
(2002) Hofmann Takeuchi, PRA
66, 024308 (2002)
8CSIGN gate
-1/3
1/3
1/3
Ralph, Langford, Bell White, PRA 65, 062324
(2002) Hofmann Takeuchi, PRA
66, 024308 (2002)
9CSIGN gate
-1/3
1/3
1/3
Ralph, Langford, Bell White, PRA 65, 062324
(2002) Hofmann Takeuchi, PRA
66, 024308 (2002)
10CNOT gate
-1/3
Control out
Control in
1/3
Target in
Target out
1/3
Ralph, Langford, Bell White, PRA 65, 062324
(2002) Hofmann Takeuchi, PRA
66, 024308 (2002)
11(No Transcript)
12(No Transcript)
13Very stable insensitive to x-y-z translation
J. L. OBrien, G. J. Pryde, et al., Nature 426,
264 (2003)
14Measured
Ideal
Average logical fidelity Tr Mideal?Mmeas/4
94 2
OBrien, Pryde, et al., Nature 426, 264 (2003)
OBrien, Pryde, et al., PRL 93, 080502 (2004)
15CñTñin 0 -1ñ1ñ H -VñVñ
16?
17Any physical process can be written as a
completely positive map
For a CNOT
0.34
Ideal
Measured (Re)
18 Physical interpretation? Change basis
(II, IX, IY, IZ, XI, XY, XZ, YI, YX, YY, YZ, ZI,
ZX, ZY, ZZ)
CNOT
87
19 Direct measurement of process fidelity
71 measurements 93 1
Chief source of non-ideal gate operation
Gilchrist, Langford, and Nielsen,
quant-ph/0408063 OBrien, Pryde, et
al., PRL 93, 080502 (2004)
20- Measurement outcome is correlated with the signal
input - The measurement does not alter the value of the
measured obsevable - Repeated measurement yields the same result -
quantum state preparation (QSP)
Grangier et al. Nature 396, 537
21Control?in
Control?out
CNOT
Target?out
Target?in 0?
Measure
221/3
Non-deterministic when 1 photon is detected in
the meter output the measurement is known to have
succeeded
23(No Transcript)
24 Each compares two probability distributions p
and q using the classical fidelity
F gt 85 for all input states
251/3
?V ?
26Most advanced general measurement of a qubit
non-destructive arbitrary strength any basis
BUT non-deterministic
Pryde, OBrien, White, Bartlett Ralph PRL 92,
190402 (2004)
27a (HHgt VVgt) b ?VHgt HVgt)
V
a Vgt b Hgt
28QUTRITS
29What if we want to create photonic qudits?
- Gaussian spatial modes
- Infinite dimensional
- Discrete
- Orthogonal
- Can describe any paraxial beam
30Gaussian optical mode
31Gouy phase shift
Non-vortex Mode Families
Hermite-Gauss (HG)
rectangular
Ince-Gauss (IG)
elliptical
Laguerre-Gauss (LGN)
cylindrical
Vortex Mode Families (carrying orbital angular
momentum)
Laguerre-Gauss (LGV)
32 Mair et al., Nature 412, 313 (2001) Vaziri et
al., PRL 89, 240401 (2002)
Langford et al., PRL 93, 053601 (2004)
33(No Transcript)
34Low Spatial Frequency
35- What is the spatial mode quantum state of the
photon pairs?
36- Uses holograms and single-mode fibres (SMFs)
37(No Transcript)
38(No Transcript)
39(No Transcript)
40coherences
41 Langford et al., quant-ph/0312072
42 Communication between mistrustful parties
Basis of other protocols, e.g. quantum coin
flipping
0
29-39-5
Alice should commit to a message and not be
able to change it. Bob should not be able to
decode the message until Alice reveals
it. Quantum bit-commitment with arbitrarily
good security is impossible Qutrits offer the
best-known BC security levels, whereas qubits do
not!
43Step 1 Alice starts with our experimentally
measured two-qutrit state.
44orthogonal two-qutrit states
non-orthogonal token states
45(No Transcript)
46achievable with qubits
qutrits
inaccessible to best known BC protocols
KEY POINTS
- Orthogonal two-qutrit states result in
non-orthogonal reduced token states. - Ideal case provides optimal security, but
simulated case still does not!
Langford et al., quant-ph/0312072
47- Quantum process tomography of CNOT fully
characterize the process in the 2-qubit space
high fidelity operation ? useful for q. info
and q. physics tests - Generalized measurement and QND
non-destructive arbitrary strength any basis - Qutrit entanglement measured, characterized
for use in communications protocols