SENIOR THESIS PRESENTATION - PowerPoint PPT Presentation

About This Presentation
Title:

SENIOR THESIS PRESENTATION

Description:

SENIOR THESIS PRESENTATION An Evaluation of Water-Side Economics & Emissions Presented By: Anly Lor | Mechanical Option The Pennsylvania State University – PowerPoint PPT presentation

Number of Views:117
Avg rating:3.0/5.0
Slides: 31
Provided by: Anl92
Learn more at: https://www.engr.psu.edu
Category:

less

Transcript and Presenter's Notes

Title: SENIOR THESIS PRESENTATION


1
SENIOR THESIS PRESENTATION An Evaluation of
Water-Side Economics Emissions
Presented By Anly Lor Mechanical Option The
Pennsylvania State University Department of
Architectural Engineering April 15, 2009
Sinai Hospital South Tower Vertical
Expansion 2401 W. Belvedere Ave. Baltimore, MD
21215
Introduction ? Existing Conditions ? Thermal
Energy Storage ? Structural Impact ? Solar Water
Heating ? Final Thoughts 1 ? 2 ? 3 ? 4 ? 5 ? 6 ?
7 ? 8 ? 9 ? 10 ? 11 ? 12 ? 13 ? 14 ? 15 ? 16 ? 17
? 18 ? 19 ? 20 ? 21 ? 22 ? 23 ? 24 ? 25 ? 26 ? 27
? 28 ? 29 ? 30
2
Presentation Outline
  • Existing Conditions
  • ? Site, Architecture, Mechanical Systems
  • Chilled Water Plant Redesign
  • ? Thermal Energy Storage
  • Structural Impact
  • Architectural Breadth Not Presented
  • Domestic Hot Water System Redesign
  • ? Solar Water Heating
  • Final Thoughts

Introduction ? Existing Conditions ? Thermal
Energy Storage ? Structural Impact ? Solar Water
Heating ? Final Thoughts 1 ? 2 ? 3 ? 4 ? 5 ? 6 ?
7 ? 8 ? 9 ? 10 ? 11 ? 12 ? 13 ? 14 ? 15 ? 16 ? 17
? 18 ? 19 ? 20 ? 21 ? 22 ? 23 ? 24 ? 25 ? 26 ? 27
? 28 ? 29 ? 30
3
Existing Conditions Site Architecture
? Three additional stories, penthouse, helipad,
six-story link lobby 120,000 SF ? Six-story
link connects South Tower to North Tower (General
Hospital) ? Construction cost 28,000,000/230
per SF
Introduction ? Existing Conditions ? Thermal
Energy Storage ? Structural Impact ? Solar Water
Heating ? Final Thoughts 1 ? 2 ? 3 ? 4 ? 5 ? 6 ?
7 ? 8 ? 9 ? 10 ? 11 ? 12 ? 13 ? 14 ? 15 ? 16 ? 17
? 18 ? 19 ? 20 ? 21 ? 22 ? 23 ? 24 ? 25 ? 26 ? 27
? 28 ? 29 ? 30
4
Existing Conditions Function
? 120 additional beds (patient, isolation,
operating rooms)
P
Penthouse/New Mechanical
New Vertical Expansion
6
Intermediate Care Unit 27,000 SF
5
Traumatic Brain Injury 27,000 SF
4
Intensive Care Unit 27,000 SF
3
Neurology
2
Cardiology
Existing South Tower
1
Emergency Center (ER-7)
G
Basement/Existing Mechanical
Introduction ? Existing Conditions ? Thermal
Energy Storage ? Structural Impact ? Solar Water
Heating ? Final Thoughts 1 ? 2 ? 3 ? 4 ? 5 ? 6 ?
7 ? 8 ? 9 ? 10 ? 11 ? 12 ? 13 ? 14 ? 15 ? 16 ? 17
? 18 ? 19 ? 20 ? 21 ? 22 ? 23 ? 24 ? 25 ? 26 ? 27
? 28 ? 29 ? 30
5
Existing Conditions Mechanical Systems
  • AIR SIDE
  • Medium-pressure VAV supply return
  • Two new AHUs provide 136,000 CFM additional
    capacity
  • Two existing AHUs provide redundancy
  • New dedicated exhaust system for isolation rooms
  • Individual patient room SATUs
  • Ductwork extended down from penthouse through
    two mechanical shafts
  • WATER SIDE
  • New 2,000-ton variable speed centrifugal
    chiller, associated pumps, cooling tower
  • Space allocated in penthouse for future
    2,000-ton chiller, pumps, tower
  • Existing heating hot water, steam, domestic
    water mains extended from third floor
  • ? Three 4,545 MBH steam-to-hot water converters
    on ground floor

Introduction ? Existing Conditions ? Thermal
Energy Storage ? Structural Impact ? Solar Water
Heating ? Final Thoughts 1 ? 2 ? 3 ? 4 ? 5 ? 6 ?
7 ? 8 ? 9 ? 10 ? 11 ? 12 ? 13 ? 14 ? 15 ? 16 ? 17
? 18 ? 19 ? 20 ? 21 ? 22 ? 23 ? 24 ? 25 ? 26 ? 27
? 28 ? 29 ? 30
6
Mechanical System Redesign Background
Health care facilities consume the 3rd most
energy per SF of all building types in the U.S.
76
Hospitals in the U.S spend an average of
1.93 per SF per year in electricity costs
16
8
Source U.S. Department of Energy
Introduction ? Existing Conditions ? Thermal
Energy Storage ? Structural Impact ? Solar Water
Heating ? Final Thoughts 1 ? 2 ? 3 ? 4 ? 5 ? 6 ?
7 ? 8 ? 9 ? 10 ? 11 ? 12 ? 13 ? 14 ? 15 ? 16 ? 17
? 18 ? 19 ? 20 ? 21 ? 22 ? 23 ? 24 ? 25 ? 26 ? 27
? 28 ? 29 ? 30
7
Mechanical System Redesign Objectives
  • ? Reduce operating costs
  • ? Thermal energy storage
  • ? Alter plant load profile
  • ? Utilize time-of-use electric utility rates
  • ? Solar water heating
  • ? Use solar collectors to heat domestic water
  • ? Achieve a viable payback period
  • Reduce greenhouse gas emissions
  • ? Renewable energy

Introduction ? Existing Conditions ? Thermal
Energy Storage ? Structural Impact ? Solar Water
Heating ? Final Thoughts 1 ? 2 ? 3 ? 4 ? 5 ? 6 ?
7 ? 8 ? 9 ? 10 ? 11 ? 12 ? 13 ? 14 ? 15 ? 16 ? 17
? 18 ? 19 ? 20 ? 21 ? 22 ? 23 ? 24 ? 25 ? 26 ? 27
? 28 ? 29 ? 30
8
Chilled Water Plant Redesign Load Profiling
? Only expansion modeled floors 4, 5, 6
Total Plant Load 12,345 ton-hr
Average Hourly Plant Load 515 tons
Peak Hourly Plant Load 619 tons
Load Factor 83.2
Cooling Plant Design Day Load (tons) ? Modeled by
TRACE 700
Introduction ? Existing Conditions ? Thermal
Energy Storage ? Structural Impact ? Solar Water
Heating ? Final Thoughts 1 ? 2 ? 3 ? 4 ? 5 ? 6 ?
7 ? 8 ? 9 ? 10 ? 11 ? 12 ? 13 ? 14 ? 15 ? 16 ? 17
? 18 ? 19 ? 20 ? 21 ? 22 ? 23 ? 24 ? 25 ? 26 ? 27
? 28 ? 29 ? 30
9
Chilled Water Plant Redesign Load Shifting
Additional firm capacity for previous
construction (non-shaded region)
VERTICAL EXPANSION CAPACITY
? Time-of-use electric utility rates highest from
7AM 9PM
Introduction ? Existing Conditions ? Thermal
Energy Storage ? Structural Impact ? Solar Water
Heating ? Final Thoughts 1 ? 2 ? 3 ? 4 ? 5 ? 6 ?
7 ? 8 ? 9 ? 10 ? 11 ? 12 ? 13 ? 14 ? 15 ? 16 ? 17
? 18 ? 19 ? 20 ? 21 ? 22 ? 23 ? 24 ? 25 ? 26 ? 27
? 28 ? 29 ? 30
10
Chilled Water Plant Redesign Load Shifting
NORMAL CHILLER OPERATION
THERMAL ENERGY STORAGE
? 7,613 ton-hr of cooling capacity moved from
peak hours to off-peak hours
Introduction ? Existing Conditions ? Thermal
Energy Storage ? Structural Impact ? Solar Water
Heating ? Final Thoughts 1 ? 2 ? 3 ? 4 ? 5 ? 6 ?
7 ? 8 ? 9 ? 10 ? 11 ? 12 ? 13 ? 14 ? 15 ? 16 ? 17
? 18 ? 19 ? 20 ? 21 ? 22 ? 23 ? 24 ? 25 ? 26 ? 27
? 28 ? 29 ? 30
11
Chilled Water Plant Redesign Load Shifting
NORMAL CHILLER OPERATION
THERMAL ENERGY STORAGE
Future capacity for future loads
? Future chiller can still provide cooling
capacity for future loads
Introduction ? Existing Conditions ? Thermal
Energy Storage ? Structural Impact ? Solar Water
Heating ? Final Thoughts 1 ? 2 ? 3 ? 4 ? 5 ? 6 ?
7 ? 8 ? 9 ? 10 ? 11 ? 12 ? 13 ? 14 ? 15 ? 16 ? 17
? 18 ? 19 ? 20 ? 21 ? 22 ? 23 ? 24 ? 25 ? 26 ? 27
? 28 ? 29 ? 30
12
Chilled Water Plant Redesign Sizing
  • ? Ice storage utilized
  • ? 7,613 ton-hr required
  • ? CALMAC ICEBANK storage tanks used
  • ? Provide 162 ton-hr capacity per tank
  • 47 storage tanks needed
  • ? 18,000 ft³ of space
  • ? Chilled water tank would have required 83,000
    ft³ of space

Introduction ? Existing Conditions ? Thermal
Energy Storage ? Structural Impact ? Solar Water
Heating ? Final Thoughts 1 ? 2 ? 3 ? 4 ? 5 ? 6 ?
7 ? 8 ? 9 ? 10 ? 11 ? 12 ? 13 ? 14 ? 15 ? 16 ? 17
? 18 ? 19 ? 20 ? 21 ? 22 ? 23 ? 24 ? 25 ? 26 ? 27
? 28 ? 29 ? 30
13
Chilled Water Plant Redesign Sequence Of Operation
?
CHARGE CYCLE (9PM 7AM)
?
  • ? CH-1 meets South Tower Vertical Expansion
    cooling load
  • ? CH-2 charges storage tanks through internal
    freeze (ice mode)
  • McQuay WDC126 chiller has normal mode and ice
    mode
  • Ethylene glycol-based industrial coolant can be
    used in standard equipment

Introduction ? Existing Conditions ? Thermal
Energy Storage ? Structural Impact ? Solar Water
Heating ? Final Thoughts 1 ? 2 ? 3 ? 4 ? 5 ? 6 ?
7 ? 8 ? 9 ? 10 ? 11 ? 12 ? 13 ? 14 ? 15 ? 16 ? 17
? 18 ? 19 ? 20 ? 21 ? 22 ? 23 ? 24 ? 25 ? 26 ? 27
? 28 ? 29 ? 30
14
Chilled Water Plant Redesign Sequence Of Operation
?
DISCHARGE CYCLE (7AM 9PM)
? CH-1 discharges storage tanks through internal
melt to meet South Tower Vertical Expansion
cooling load ? CH-2 is off
Introduction ? Existing Conditions ? Thermal
Energy Storage ? Structural Impact ? Solar Water
Heating ? Final Thoughts 1 ? 2 ? 3 ? 4 ? 5 ? 6 ?
7 ? 8 ? 9 ? 10 ? 11 ? 12 ? 13 ? 14 ? 15 ? 16 ? 17
? 18 ? 19 ? 20 ? 21 ? 22 ? 23 ? 24 ? 25 ? 26 ? 27
? 28 ? 29 ? 30
15
Chilled Water Plant Redesign Sequence Of Operation
?
FUTURE DISCHARGE CYCLE (7AM 9PM)
?
? CH-1 discharges storage tanks through internal
melt to meet South Tower Vertical Expansion
cooling load ? CH-2 operates in parallel with
CH-1 to meet future cooling load (normal mode)
Introduction ? Existing Conditions ? Thermal
Energy Storage ? Structural Impact ? Solar Water
Heating ? Final Thoughts 1 ? 2 ? 3 ? 4 ? 5 ? 6 ?
7 ? 8 ? 9 ? 10 ? 11 ? 12 ? 13 ? 14 ? 15 ? 16 ? 17
? 18 ? 19 ? 20 ? 21 ? 22 ? 23 ? 24 ? 25 ? 26 ? 27
? 28 ? 29 ? 30
16
Chilled Water Plant Redesign Cost Analysis Rates
? Take advantage of time-of-use electric utility
rates
NON-TIME-OF-USE RATES
TIME-OF-USE RATES
Summer (Jun-Sep)
Winter (Oct-May)
Summer (Jun-Sep)
Winter (Oct-May)
Introduction ? Existing Conditions ? Thermal
Energy Storage ? Structural Impact ? Solar Water
Heating ? Final Thoughts 1 ? 2 ? 3 ? 4 ? 5 ? 6 ?
7 ? 8 ? 9 ? 10 ? 11 ? 12 ? 13 ? 14 ? 15 ? 16 ? 17
? 18 ? 19 ? 20 ? 21 ? 22 ? 23 ? 24 ? 25 ? 26 ? 27
? 28 ? 29 ? 30
17
Chilled Water Plant Redesign Cost Analysis
Operation
Chiller Full Load Kilowatts 1,255
  • CURRENT DESIGN
  • 519,023 kWh/year _at_ 10.0/kWh
  • 718,426 kWh/year _at_ 11.6/kWh
  • REDESIGN (w/TES)
  • 478,950 kWh/year _at_ 7.6/kWh
  • 432,518 kWh/year _at_ 8.3/kWh
  • 119,738 kWh/year _at_ 9.5/kWh

82,976
134,423
  • Annual Savings
  • 51,447
  • 0.43 per SF
  • 2.817/kWh

Introduction ? Existing Conditions ? Thermal
Energy Storage ? Structural Impact ? Solar Water
Heating ? Final Thoughts 1 ? 2 ? 3 ? 4 ? 5 ? 6 ?
7 ? 8 ? 9 ? 10 ? 11 ? 12 ? 13 ? 14 ? 15 ? 16 ? 17
? 18 ? 19 ? 20 ? 21 ? 22 ? 23 ? 24 ? 25 ? 26 ? 27
? 28 ? 29 ? 30
18
Chilled Water Plant Redesign Cost Analysis
Payback
Installed cost of thermal energy storage ?
100/ton-hr ? 761,300 first cost ? 51,447
annual operating cost savings Simple payback
period 14.8 years
Introduction ? Existing Conditions ? Thermal
Energy Storage ? Structural Impact ? Solar Water
Heating ? Final Thoughts 1 ? 2 ? 3 ? 4 ? 5 ? 6 ?
7 ? 8 ? 9 ? 10 ? 11 ? 12 ? 13 ? 14 ? 15 ? 16 ? 17
? 18 ? 19 ? 20 ? 21 ? 22 ? 23 ? 24 ? 25 ? 26 ? 27
? 28 ? 29 ? 30
19
Structural Impact Tank Configuration
  • BEAM LOADS
  • W12x26
  • ? 68 kips
  • W18x35
  • ? 127.5 kips

Introduction ? Existing Conditions ? Thermal
Energy Storage ? Structural Impact ? Solar Water
Heating ? Final Thoughts 1 ? 2 ? 3 ? 4 ? 5 ? 6 ?
7 ? 8 ? 9 ? 10 ? 11 ? 12 ? 13 ? 14 ? 15 ? 16 ? 17
? 18 ? 19 ? 20 ? 21 ? 22 ? 23 ? 24 ? 25 ? 26 ? 27
? 28 ? 29 ? 30
20
Structural Impact Beam Resizing
? The required section modulus and moment of
inertia were determined based on subjected load
for each beam
Allowable Section Modulus Allowable Moment Of Inertia
W12x26 33.4 204
W18x35 57.6 510
Required Section Modulus Required Moment Of Inertia
W12x26 134 2,207
W18x35 291 5,508
? The existing beams were severely undersized ?
Two new beams were proposed to meet the required
section modulus and moment of inertia
Allowable Section Modulus Allowable Moment Of Inertia
W24x84 196 2,370
W27x146 411 5,630
? Possibly relocate storage tanks to reduce
structural impact!
Introduction ? Existing Conditions ? Thermal
Energy Storage ? Structural Impact ? Solar Water
Heating ? Final Thoughts 1 ? 2 ? 3 ? 4 ? 5 ? 6 ?
7 ? 8 ? 9 ? 10 ? 11 ? 12 ? 13 ? 14 ? 15 ? 16 ? 17
? 18 ? 19 ? 20 ? 21 ? 22 ? 23 ? 24 ? 25 ? 26 ? 27
? 28 ? 29 ? 30
21
Domestic Hot Water System Redesign Overview
  • South Tower Vertical Expansion hot water demand
  • 145,000 BTU/hr
  • ? 60F cold water supply, 140F hot water
    distribution
  • Solar energy will account for all domestic water
    heating (initial goal)
  • ? 145F fluid temperature required (hot water
    distribution temperature plus 5F)
  • Heliodyne solar flat-plate collectors used (blue
    sputtered)
  • High temperature fluid used
  • ? Dyn-O-Flo HD propylene glycol with inhibitors
    in a 50/50 solution with water

Introduction ? Existing Conditions ? Thermal
Energy Storage ? Structural Impact ? Solar Water
Heating ? Final Thoughts 1 ? 2 ? 3 ? 4 ? 5 ? 6 ?
7 ? 8 ? 9 ? 10 ? 11 ? 12 ? 13 ? 14 ? 15 ? 16 ? 17
? 18 ? 19 ? 20 ? 21 ? 22 ? 23 ? 24 ? 25 ? 26 ? 27
? 28 ? 29 ? 30
22
Domestic Hot Water System Redesign Solar Study
Baltimore, MD
  • Must account for collector efficiency
  • (higher fluid temperature ? lower efficiency)

Source National Solar Radiation Database
  • Solar collectors are south-facing (maximum
    absorption)
  • Solar collectors are tilted at an angle of 34
    (recommended latitude minus 5)

Introduction ? Existing Conditions ? Thermal
Energy Storage ? Structural Impact ? Solar Water
Heating ? Final Thoughts 1 ? 2 ? 3 ? 4 ? 5 ? 6 ?
7 ? 8 ? 9 ? 10 ? 11 ? 12 ? 13 ? 14 ? 15 ? 16 ? 17
? 18 ? 19 ? 20 ? 21 ? 22 ? 23 ? 24 ? 25 ? 26 ? 27
? 28 ? 29 ? 30
23
Domestic Hot Water System Redesign Sizing
? Domestic water heating demand was evaluated for
month with smallest solar radiation ? December
6,753 BTU/ft²/month ? 15,460 ft² of solar
collection area required ? Equivalent to 413
solar flat-plate collectors
Problem Not practical!
  • Solution
  • Partial solar water heating
  • Lower fluid temperature ? higher efficiency

Introduction ? Existing Conditions ? Thermal
Energy Storage ? Structural Impact ? Solar Water
Heating ? Final Thoughts 1 ? 2 ? 3 ? 4 ? 5 ? 6 ?
7 ? 8 ? 9 ? 10 ? 11 ? 12 ? 13 ? 14 ? 15 ? 16 ? 17
? 18 ? 19 ? 20 ? 21 ? 22 ? 23 ? 24 ? 25 ? 26 ? 27
? 28 ? 29 ? 30
24
Domestic Hot Water System Redesign Sizing
Cold Water Supply Temperature Fluid Temperature Solar Water Heating ?T Collector Efficiency Of Collectors Required
60 145 80 38.83 413
60 135 70 42.05 333
60 125 60 45.27 265
60 115 50 48.49 206
60 105 40 51.71 155
60 95 30 54.93 109
60 85 20 58.15 69
60 75 10 61.37 33
  • For the month of December

Introduction ? Existing Conditions ? Thermal
Energy Storage ? Structural Impact ? Solar Water
Heating ? Final Thoughts 1 ? 2 ? 3 ? 4 ? 5 ? 6 ?
7 ? 8 ? 9 ? 10 ? 11 ? 12 ? 13 ? 14 ? 15 ? 16 ? 17
? 18 ? 19 ? 20 ? 21 ? 22 ? 23 ? 24 ? 25 ? 26 ? 27
? 28 ? 29 ? 30
25
Domestic Hot Water System Redesign Schematic
?
  • ? COLLECTOR LOOP
  • Fluid enters solar collector array and absorbs
    solar energy
  • Fluid enters heat exchanger and transfers heat
    to water in storage loop
  • ? STORAGE LOOP
  • Cold water supply enters heat exchanger and
    absorbs heat from fluid in collector loop
  • Hot water is stored and heated to 140F by
    steam-to-hot water converter before distribution

?
Introduction ? Existing Conditions ? Thermal
Energy Storage ? Structural Impact ? Solar Water
Heating ? Final Thoughts 1 ? 2 ? 3 ? 4 ? 5 ? 6 ?
7 ? 8 ? 9 ? 10 ? 11 ? 12 ? 13 ? 14 ? 15 ? 16 ? 17
? 18 ? 19 ? 20 ? 21 ? 22 ? 23 ? 24 ? 25 ? 26 ? 27
? 28 ? 29 ? 30
26
Domestic Hot Water System Redesign Cost Analysis
  • Installed cost of solar collectors
  • 75/ft²
  • For 33 installed solar collectors
  • ? 91,697 first cost
  • ? 6,092 annual operating cost savings
  • Simple payback period
  • 15.1 years

Introduction ? Existing Conditions ? Thermal
Energy Storage ? Structural Impact ? Solar Water
Heating ? Final Thoughts 1 ? 2 ? 3 ? 4 ? 5 ? 6 ?
7 ? 8 ? 9 ? 10 ? 11 ? 12 ? 13 ? 14 ? 15 ? 16 ? 17
? 18 ? 19 ? 20 ? 21 ? 22 ? 23 ? 24 ? 25 ? 26 ? 27
? 28 ? 29 ? 30
27
Domestic Hot Water System Redesign Cost Analysis
Introduction ? Existing Conditions ? Thermal
Energy Storage ? Structural Impact ? Solar Water
Heating ? Final Thoughts 1 ? 2 ? 3 ? 4 ? 5 ? 6 ?
7 ? 8 ? 9 ? 10 ? 11 ? 12 ? 13 ? 14 ? 15 ? 16 ? 17
? 18 ? 19 ? 20 ? 21 ? 22 ? 23 ? 24 ? 25 ? 26 ? 27
? 28 ? 29 ? 30
28
Domestic Hot Water System Redesign Emissions
Analysis
  • For 33 installed
  • solar collectors
  • ? 189,000 lbs of carbon dioxide and carbon
    dioxide equivalents are removed from the
    environment
  • Which is equivalent to
  • 20 passenger vehicles driving 1,000 miles every
    month _at_ 25 mpg

Introduction ? Existing Conditions ? Thermal
Energy Storage ? Structural Impact ? Solar Water
Heating ? Final Thoughts 1 ? 2 ? 3 ? 4 ? 5 ? 6 ?
7 ? 8 ? 9 ? 10 ? 11 ? 12 ? 13 ? 14 ? 15 ? 16 ? 17
? 18 ? 19 ? 20 ? 21 ? 22 ? 23 ? 24 ? 25 ? 26 ? 27
? 28 ? 29 ? 30
29
Conclusions
? Thermal energy storage is a viable option ?
51,447 annual operating cost savings ?
14.8-year payback period is achievable ? Low
maintenance equipment ? longer life cycle ? Solar
water heating can be considered at small scales
in mixed climates ? 6,092 annual operating cost
savings for 33 installed solar collectors ?
15.1-year payback period is achievable ? Solar
collectors have an average lifespan greater than
twenty years ? Using renewable energy removes the
equivalent greenhouse gas emissions of 20
passenger vehicles
? Health care facilities have a median lifetime
of 65 years ? 66 survive at least 48 years
Introduction ? Existing Conditions ? Thermal
Energy Storage ? Structural Impact ? Solar Water
Heating ? Final Thoughts 1 ? 2 ? 3 ? 4 ? 5 ? 6 ?
7 ? 8 ? 9 ? 10 ? 11 ? 12 ? 13 ? 14 ? 15 ? 16 ? 17
? 18 ? 19 ? 20 ? 21 ? 22 ? 23 ? 24 ? 25 ? 26 ? 27
? 28 ? 29 ? 30
30
QUESTIONS?
Presented By Anly Lor Mechanical Option The
Pennsylvania State University Department of
Architectural Engineering April 15, 2009
Sinai Hospital South Tower Vertical
Expansion 2401 W. Belvedere Ave. Baltimore, MD
21215
Introduction ? Existing Conditions ? Thermal
Energy Storage ? Structural Impact ? Solar Water
Heating ? Final Thoughts 1 ? 2 ? 3 ? 4 ? 5 ? 6 ?
7 ? 8 ? 9 ? 10 ? 11 ? 12 ? 13 ? 14 ? 15 ? 16 ? 17
? 18 ? 19 ? 20 ? 21 ? 22 ? 23 ? 24 ? 25 ? 26 ? 27
? 28 ? 29 ? 30
Write a Comment
User Comments (0)
About PowerShow.com