Title: Analysis, Modelling and Simulation of Energy Systems, SEE-T9
15. mm. systematic modelling
- What motivates the concept of systematic
modelling? - The multigate-method used in systematic modelling
- Introduction to the software MULTIPORT
- A primer on combustion calculations
2Motivation
Cycle Tempo
- The complexity of real systems
3Motivation
- Real thermodynamic systems are complex.
- Non-linear equation sets can be tremendously huge
making testing and error tracing difficult and
time-demanding. - Systematic modelling gives overview and ensures
that the correct conservation equations are set
up.
4Methods
-Energy and mass balance equations at a multigate
approach
Continuity
)
(
)
(
j
stream
i
stream
å
å
m
m
out
in
)
1
(
)
1
(
stream
stream
energy
of
on
Conservati
ö
æ
ö
æ
)
(
)
(
)
(
)
(
)
(
)
(
j
stream
n
stream
m
stream
l
stream
k
stream
i
stream
å
å
å
å
å
å
ç
ç
-
-
-
W
W
Q
Q
h
m
h
m
ç
ç
,
,
in
out
in
out
out
mix
out
in
mix
in
ç
ç
ø
è
ø
è
)
1
(
)
1
(
)
1
(
)
1
(
)
1
(
)
1
(
stream
stream
stream
stream
stream
stream
- Note
- Enthalpies must have some referece states!
- The modelled phenomenon must be stationar.
- Note neglected terms and assumptions!
5Standard component models
///////////////////////////////////////
Steam turbine ////////////////////
/////////////////// k_d(0,6466(W/1e6)
(-0,5)-0,3616(W/1e6)(-0,25)1,3026) eta
1/(k_d(1-0,151((W/1e6)(-0,25)-0,34
)(103,4(0,25)-p(0,25)))) sentropy(st
eamppTT) vvolume(steampp
TT) eta(h-h!!!)/(h-h_s!
!!) mC_tsqrt(((p1e5)2-(p!!!
1e5)2)/(p1e5v)) h_s!!!enthalpy(ste
amsspp!!!) h!!!enthalpy(steamss!!
!pp!!!) T!!!temperature(steamss!!!
pp!!!) x!!!quality(steam hh!!!
pp!!!) W_akselW W_elW0,9
6
/////////////////////////////////////////////////
// ///////// HE Water-Water
///////// //////////////////////////////////////
///////////// m!!!m m(h-h!!!
)1000Q p!!!p pp
T!!!temperature(waterhh!!!
pp!!!) Ttemperature(waterhh
pp) QUAdT
ddTT-T ddTT!!!-T
dT(ddT-ddT)/ln(ddT/ddT)
6Example
-Basic combined cycle plant
7Stationary modelling
A stationary system can always be modeled by
setting up an equation set with N eqs. and N
unknowns!
8Multigate approach
- Setting up the interconnection matrix
1 Primary flows 2 Secondary flows 3
Energy flows
9Systematic conservation equations
Continuity
Energy
For energy in flows Pmh
ICM is the interconnection matix, m is the mass
flow vector and P is the energy flow vector
10System data
p21 1 bar h21375 kJ/kg
22MW
h22175 kJ/kg
Tpinch10ºC
p1 bar
hluft31 kJ/kg
hgas31 kJ/kg
A4000 m²
h83.400 kJ/kg
p1840 bar
wpumpe
19
?pump80
p130,065 bar
- Boiler areas are unknown.
- Output shaft powers are unknown.
h1640 kJ/kg
h17105 kJ/kg
11Property matrix
12The closeure component
From the heat exchanger model we also have
gt Overdetermined eq. set!
13Energy and mass conservation
14Combustion calculations
15Dissociation
- Dissociation expresses the equilibrium of a
given reaction. - A chemical process never finishes. Therefore
unintentional products like CO is - Often part of the flue gas.
- Dissociation can in general be neglected for
temperatures below 1600C.
16Adiabatic combustion temp., Tad
Numerical determination
Note! Real combustion temperature is always below
the adiabatic combustion temperature!
17Heating values of a fuel
Lower heating value (water on steam form)
Heating value for mixtures
T25ºC, p1 bar
18When using MULTIPORT
Use Danish notation (decimal separator is , in
generated EES-models)!