Automatic Verification of Pointer Programs using Grammar-based Shape Analysis - PowerPoint PPT Presentation

About This Presentation
Title:

Automatic Verification of Pointer Programs using Grammar-based Shape Analysis

Description:

Automatic Verification of Pointer Programs using Grammar-based Shape Analysis Hongseok Yang Seoul National University (Joint Work with Oukseh Lee and Kwangkeun Yi) – PowerPoint PPT presentation

Number of Views:97
Avg rating:3.0/5.0
Slides: 31
Provided by: hya53
Category:

less

Transcript and Presenter's Notes

Title: Automatic Verification of Pointer Programs using Grammar-based Shape Analysis


1
Automatic Verification of Pointer Programs using
Grammar-based Shape Analysis
  • Hongseok Yang
  • Seoul National University
  • (Joint Work with Oukseh Lee and Kwangkeun Yi)

2
Automatic Verification of Pointer Programs
  • Inference of program invariants
  • crucial for automatic verification.
  • Difficulty unboundedly many new heap cells.

h
hnil while () xnew(nil,nil) if
(hnil) hx else x-gtnexth
h-gtprevx hx
nil
h
Need to summarize heap cells.
nil
nil
h
nil
nil
h
nil
nil
h
nil
nil
3
Goal Precise High-level Invariants
h
  • Existing technology Shape analysisSaReWi96,99.
  • Idea Use a grammar to find a good abstraction of
    each heap object (i.e., cells and their
    pointers).

nil
nil
h
nil
nil
nil
h
nil
p
dlist(p) nil p
dlist(c)
c
dlist(p)
4
Demo
  • Binomial heap construction (all pointers to nil
    are omitted.)
  • Our immediate goal was to handle the binomial
    heap construction algorithm.

5
Structure of Our Analysis
while(B) C1 C2 C3 C4
Embed
Nk
D
Abstract Execution
D
Nk
Normalize
6
Abstract Domain D Grammar
  • D Pf(Graph) x Grammar T
  • A grammar R is a set of following rules
  • ?(x) nil O
  • where V1, V2 2 nil, self, x, ?(_), ?(self),
    ?(nil), ?(x)
  • Examples
  • tree(x) nil O
  • dList(x) nil O

V1
V2
tree(_)
tree(_)
x
dList(self)
7
Abstract Domain D Shape Graph
  • D Pf(Graph) x Grammar T
  • Shape graph
  • Each node is concrete (a), annotated with nil
    (d), or annotated with a nonterminal (c and
    b).
  • An element (S,G) in D is called abstract state.

y
Stack
x
Heap
a
ctree(_)
bdList(a)
dnil
8
Normalized Abstract Domain Nk
  • Idealized version of normalization
  • Group nodes according to heap objects
  • Compute the best grammar that describes each
    group
  • Ensure that each shape graph doesnt use more
    than k nodes.
  • Example
  • Nk (µ D) consists of normalized abstract
    states.
  • The actual definition of Nk is not algorithmic.

x
x
x
normalize
a
anil
atree(_)
cnil
b
dnil
enil
tree(_)
tree(_) nil O
tree(_)
9
Definition of Analysis
  • Analysis of programs without loops
  • Forward analysis C D ! D
  • Case pruning B D ! D
  • while B CA FixAv F tnFn(normalize(A)).
  • F Nk ! Nk
  • F ?A. normalize(A t B(CA)))

10
Doubly Linked List Construction
  • h nil
  • while ()
  • var x
  • x new
  • if (h nil)
  • h x
  • else
  • x-gtnext h
  • h-gtprev x
  • h x

11
Inferred Loop Invariant
  • Inferred abstract state (i.e., shape-graph set
    and grammar)

prev
nil
?(x) nil O
h
?(self)
next
prev
x
?(x) nil O
a?(_)
?(self)
next
12
3rd Iteration Step
  • Abstract state A2 after the 2rd iteration
  • Inferred invariant A
  • A normalize(A2 t LoopBody(A2))

prev
nil
?(x) nil O
h
?(self)
next
prev
x
?(x) nil O
a?(_)
nil
next
prev
nil
?(x) nil O
h
?(self)
next
prev
x
?(x) nil O
a?(_)
?(self)
next
13
Computation of A2tLoopBody(A2)
prev
prev
nil
x
?(x) nil O
?(x) nil O
?(self)
nil
next
next
h
h
x
xnew
if(hnil)
prev
next
aa(_)
aa(_)
e
fnil
gnil
  1. Unroll ?.
  2. Prune cases.
  3. Execute.
  4. Join results.
  5. Collect garbage.

x
h
True Branch
prev
next
anil
e
fnil
gnil
x
h
False Branch
next
next
prev
next
a
c?(a)
e
fnil
gnil
bnil
prev
prev
14
Normalization 1 Identify Heap Objects
  • Identify data structures, and express them by
    nonterminals.

h
h
h
prev
next
prev
next
next
a
a
aa(_)
bnil
cnil
bnil
c
d?(c)
prev
prev
nil
?(x) nil O
?(self)
next
prev
x
?(x) nil O
nil
next
prev
nil
?(x)O
nil
next
15
Normalization 1 Identify Heap Objects
  • Identify data structures, and express them by
    nonterminals.

h
h
h
prev
next
next
a
aa(_)
bnil
c
d?(c)
a?(_)
prev
prev
prev
nil
x
g(x)O
?(x) nil O
?(self)
?(self)
next
next
prev
x
?(x) nil O
nil
next
prev
nil
?(x)O
nil
next
16
Normalization 1 Identify Heap Objects
  • Identify data structures, and express them by
    nonterminals.

h
h
h
prev
next
a
aa(_)
bnil
c?(a)
a?(_)
prev
prev
nil
x
g(x)O
?(x) nil O
?(self)
?(self)
next
next
prev
prev
x
nil
?(x) nil O
p(x)O
nil
g(self)
next
next
prev
nil
?(x)O
nil
next
17
Normalization 1 Identify Heap Objects
  • Identify data structures, and express them by
    nonterminals.

h
h
h
aa(_)
a?(_)
a?(_)
prev
prev
nil
x
g(x)O
?(x) nil O
?(self)
?(self)
next
next
prev
prev
x
nil
?(x) nil O
p(x)O
nil
g(self)
next
next
prev
nil
?(x)O
nil
next
18
Normalization 2 Unify Similar Shape Graphs
  • Roughly, two shape graphs are similar iff they
    coincide except the use of nonterminals.

h
h
h
h
aa(_)
a?(_)
a?(_)
at(_)
prev
prev
nil
x
g(x)O
?(x) nil O
?(self)
?(self)
next
next
prev
prev
x
nil
?(x) nil O
p(x)O
nil
g(self)
next
next
prev
prev
prev
nil
nil
nil
prev
nil
O
O
t(x) nil O
?(x)O
?(self)
nil
g(self)
nil
next
next
next
next
19
Normalization 3 Collect Garbage
  • Eliminate the definitions of unused nonterminals
    from the grammar.

h
at(_)
prev
prev
nil
x
?,?,? are not used
g(x)O
?(x) nil O
?(self)
?(self)
next
next
prev
prev
x
nil
?(x) nil O
p(x)O
nil
g(self)
next
next
prev
prev
prev
nil
nil
nil
prev
nil
O
O
t(x) nil O
?(x)O
?(self)
nil
g(self)
nil
next
next
next
next
20
Normalization 4 Simplify the Grammar
  • Regard a(x) and nil as the same.
  • Combine same cases and same definitions.

h
at(_)
prev
x
g(x)O
nil
?(self)
next
prev
x
?(x) nil O
Same Cases
nil
next
prev
prev
prev
nil
nil
nil
O
O
t(x) nil O
?(self)
nil
g(self)
next
next
next
21
Normalization 4 Simplify the Grammar
  • Regard a(x) and nil as the same.
  • Combine same cases and same definitions.

h
at(_)
prev
x
Same Definitions
g(x)O
nil
?(self)
next
prev
prev
x
x
?(x) nil O
O
nil
?(self)
next
next
prev
prev
nil
nil
O
t(x) nil O
?(self)
g(self)
next
next
b(self)
22
Normalization 4 Simplify the Grammar
  • Regard a(x) and nil as the same.
  • Combine same cases and same definitions.

h
at(_)
Same Cases
prev
prev
x
x
?(x) nil O
O
nil
?(self)
next
next
prev
nil
t(x) nil O
?(self)
next
23
Normalization 4 Simplify the Grammar
  • Regard a(x) and nil as the same.
  • Combine same cases and same definitions.

h
at(_)
prev
x
?(x) nil
O
?(self)
next
prev
nil
t(x) nil O
?(self)
next
24
Summary
  • Execute the loop body abstractly
  • LoopBodyA2
  • Join the old and new values
  • A2 t LoopBodyA2
  • Normalize the obtained abstract state
  • For each shape graph, identify heap objects and
    express them using nonterminals.
  • Unify similar shape graphs.
  • Remove the definitions of unused nonterminals.
  • Simplify the grammar.

25
Correctness
  • The meaning of each abstract state (G,R) is given
    by an assertion trans(G,R) in sep. logic.
  • Correctness theorem If C(G,R) (G,R), then
    trans(G,R)Ctrans(G,R) is derivable in sep.
    logic.
  • Termination Since the domain Nk is finite, the
    analysis terminates.

26
Conclusion
  • Presented an analysis that infers the loop
    invariant of complex pointer programs.
  • The key idea is to use a grammar to describe the
    structure of a heap object (i.e., data
    structure).
  • Future work
  • Develop a systematic reusable framework.
  • Handle data structures with more extensive
    sharing.
  • dags and trees with linked leaf nodes, etc.
  • Prove a property that relates the input and ouput
    states.
  • SW recovers link fields to their original values.

27
Inferred Loop Invariant
  • Inferred shape-graph set and grammar
  • Representation by an assertion

prev
nil
?(x) nil O
h
?(self)
next
prev
x
?(x) nil O
a?(_)
?(self)
next
  • letrec
  • ?(a,x) (empÆanil) Ç 9b.(a ? nil,b) ?(b,a)
  • ?(a,x) (empÆanil) Ç 9b.(a ? x,b) ?(b,a)
  • in
  • 9a. ha Æ 8x.?(a,x)

28
Abstract Domain D
  • D Pf(Graph) x Grammar T
  • Shape graph
  • Each node can be concrete (a), annotated with
    nil (d), or annotated with a nonterminal (c
    and b).
  • Semantics by separation-logic assertions
  • 9abcd.(xaÆyb) Æ ((8y.tree(c,y))(a?c,d)(cnilÆe
    mp)dList(b,a))
  • Formal definition
  • Graph (Var!finSymL) x (SymL!finVal)
  • Val nil, lta,bgt, ?(a), ?() a,b2SymL,
    ?2NonTerm

y
Stack
x
Heap
a
ctree(_)
bdList(a)
dnil
29
Grammar
  • A grammar R is a set of following rules
  • ?(x) nil O
  • where V1, V2 2 nil, self, x, ?(_), ?(self),
    ?(nil)
  • Examples
  • tree(x) nil O dList(x) x O
  • Semantics by separation-logic assertions
  • tree(c,x) (cnilÆemp) Ç 9lr.(c?l,r)(8y.tree(l,y
    ))(8y.tree(r,y))
  • dList(c,p) (cnilÆemp) Ç 9n.(c?p,n)dList(n,c)
  • Formal definition
  • Grammar NonTerm !finPnf(nil Case x Case)
  • Case nil, self, arg, ?(_), ?(arg), ?(self)
    ?2NonTerm

V1
V2
tree(_)
x
tree(_)
dList(self)
30
Normalized Abstract Domain N
  • N consists of abstract states (G,R) in D s.t.
  • all data structures are expressed by
    nonterminals
  • All similar shape graphs and rules are merged.

x
a
cnil
b
dnil
enil
x
y
x
y
?(_)
?(x) nil O ?(x) nil O
?(_)
a
a
nil
nil
cnil
b?(_)
cnil
bb(_)
Write a Comment
User Comments (0)
About PowerShow.com