Two Way Algorithm - PowerPoint PPT Presentation

1 / 15
About This Presentation
Title:

Two Way Algorithm

Description:

Example Consider a string x = abcdda ,dda is a maximal suffix of x and . Hence we say that dda is a short maximal suffix of x Short Prefixes Lemma ... – PowerPoint PPT presentation

Number of Views:61
Avg rating:3.0/5.0
Slides: 16
Provided by: edut1310
Category:
Tags: algorithm | two | way

less

Transcript and Presenter's Notes

Title: Two Way Algorithm


1
Two Way Algorithm
Two-way string-matching Journal of the ACM
38(3)651-675, 1991 Crochemore M., Perrin D.
  • Advisor Prof. R. C. T. Lee
  • Speaker C. C. Yen

2
  • In 2003 ,Rytter proposed a constant space and
    linear time string matching algorithm
  • To achieving the good constant space , this
    algorithm avoids the preprocessing function table
    of the KMP algorithm
  • Before introducing this algorithm , we shall
    define some characteristic of the strings

3
The Property of Maximal Suffix
  • Consider a string P. Let P uv where v
    MaxSuf(P). The property of the maximal suffix of
    a string is If u is non-empty, no suffix of u
    will be equal to a prefix of v.
  • Example
  • Consider a pattern ababadada.
  • Let P uv ababa.dada
  • No suffix of u is equal to a prefix of v.

4
Short Maximal Suffix
  • If a maximal suffix of a string x satisfies
  • , we say that
    this maximal suffix of x is a short maximal
    suffix of x.
  • Example
  • Consider a string x abcdda ,dda is a maximal
    suffix of x and
    .
  • Hence we say that dda is a short maximal suffix
    of x

5
Short Prefixes Lemma
  • Let the decomposition of P uv, where v is the
    maximal suffix of P and v is also a short maximal
    suffix. Suppose that we start to match v with T
    at position i, a part of v is matched and a
    mismatch occurs at the j 1-th position on v.
    Then we can shift P safely by j 1 positions
    without missing any occurrence of P in T.

i
ij1
T
mismatch
j
j
P
v
u
j
P
v
u
6
  • Why do we have to use short maximal suffix?
  • Suppose V is very long, then we move pattern
    which is incorrect.

j
i
v
T
j
i
v
P
v
u
j
j1
T
j
i
P
v
u
7
  • In the following , we will introduce the basic
    rule of the Two Way Matching algorithm with short
    maximal pattern strings
  • The basic rules are given in the next slides.

8
Basic rule of the Two-Way algorithm with short
maximal
  • 1. Let the decomposition of P uv, where v is the
    maximal suffix of P and v is also a short maximal
    suffix.
  • We then find where v appears in T from left to
    right. Assume the comparison starts at position
    i. When a mismatch occurs at vj 1, we shift v
    with j 1 characters and start next comparison
    at P1 with Ti j 1.
  • When the part of v has be found in T, we scan the
    part of u from right to left. If a mismatch
    occurs when scanning u, we shift P with Period(P)
  • 4. If we find both the parts of v and u in T, we
    report an occurrence of P in T. We then shift v
    with Period(P)

9
  • Full Example
  • Tadadadaddadababadada
  • Pu.v ababa .dada

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
T a d a d a d a d d a d a b a d a d a
P a b a b a d a d a
1 2 3 4 5 6 7 8 9
10
Tadadadaddadababadada Pu.v ababa .dada
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
T a d a d a d a d d a d a b a d a d a
1 2 3 4
P a b a b a d a d a
1 2 3 4 5 6 7 8 9
Shift 4 steps
P a b a b a d a d a
1 2 3 4 5 6 7 8 9
11
Tadadadaddadababadada Pu.v ababa .dada
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
T a d a d a d a d d a d a b a d a d a
1 2 3 4
P a b a b a d a d a
1 2 3 4 5 6 7 8 9
Shift 1 steps
P a b a b a d a d a
1 2 3 4 5 6 7 8 9
12
Tadadadaddadababadada Pu.v ababa .dada
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
T a d a d a d a d d a d a d a b a b a d a d a
1 2 3 4
P a b a b a d a d a
1 2 3 4 5 6 7 8 9
Shift Preiod(P) 8 steps
P a b a b a d a d a
1 2 3 4 5 6 7 8 9
Rule 1 again!
13
Tadadadaddadababadada Pu.v ababa .dada
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
T a d a d a d a d d a d a d a b a b a d a d a
1 2 3 4
P a b a b a d a d a
1 2 3 4 5 6 7 8 9
Match!!
P a b a b a d a d a
1 2 3 4 5 6 7 8 9
Shift Preiod(P) 8 steps
14
  • References
  • BRESLAUER, D., 1996, Saving comparisons in the
    Crochemore-Perrin string matching algorithm,
    Theoretical Computer Science 158(1-2)177-192.
  • CROCHEMORE, M., 1997. Off-line serial exact
    string searching, in Pattern Matching Algorithms,
    ed. A. Apostolico and Z. Galil, Chapter 1, pp
    1-53, Oxford University Press.
  • CROCHEMORE M., PERRIN D., 1991, Two-way
    string-matching, Journal of the ACM
    38(3)651-675.
  • CROCHEMORE, M., RYTTER, W., 1994, Text
    Algorithms, Oxford University Press.

15
  • Thanks for your attention
Write a Comment
User Comments (0)
About PowerShow.com