Smart Initialization - PowerPoint PPT Presentation

1 / 38
About This Presentation
Title:

Smart Initialization

Description:

Smart Initialization Mike Romberg – PowerPoint PPT presentation

Number of Views:89
Avg rating:3.0/5.0
Slides: 39
Provided by: mark689
Category:

less

Transcript and Presenter's Notes

Title: Smart Initialization


1
Smart Initialization
  • Mike Romberg

2
Lecture
  • Smart Init what, why, how?
  • Configurability
  • Structure of Smart Init Modules
  • Override Procedures
  • Examples of Algorithms
  • Enhancements
  • Laboratory

3
What is it?
  • Derives sensible weather elements from model
    data. Creates the IFP databases from the D2D
    data.
  • Works on models, not MOS

4
Why is it needed?
  • Models do not provide sufficient spatial
    resolution.
  • Models do not provide set of needed sensible
    weather elements.

5
Derived Surface T
6
Characteristics of Smart Init
  • Field tailorable algorithms
  • Can add new weather elements
  • Can add local models, if the netCDF files are in
    the correct D2D-style format
  • Dependencies automatic
  • Grids are generated as D2D data arrives

7
How it works
8
Configurability (serverConfig/localConfig)
  • INITMODULES
  • Maps algorithms modules to models
  • INITMODULES MesoEta MESOETAU,
    MESOETAS, Eta ETA, LAPS
    LAPS
  • INITMODULES smart init module D2D
    Source Databases,

9
Configurability (serverConfig/localConfig)
  • INITSKIPS
  • Can skip certain model runs (INITSKIPS)
  • INITSKIPS RUC 1,2,4,5,7,8,10,11,13,14,16,
    17,19,20,22,23
  • INITSKIPS D2D ModelName
    hour1,hour2,hour3 to skip

10
Configurability (serverConfig/localConfig)
  • Number of D2D Versions
  • Not directly associated with smart init
  • Does NOT override D2D purging.
  • Default is 2 versions.
  • D2DDBVERSIONS ETA 3, NGM 1
  • D2DDBVERSIONS D2D model name
    numOfVersions,

11
Configurability (serverConfig/localConfig)
  • Smart init modules
  • Can override and provide own
  • Coded in Numerical Python
  • One file per new model or changed model

12
Smart Init structure
  • File locations etc/BASE, etc/SITE
  • Override files through etc/SITE
  • Uses Python inheritance

tells ifpServer what to run
import Forecaster
13
Concept of Source/Destination Database (needed
in defining new smart init modules)
  • Source database D2D netCDF file
  • Destination database IFP

14
Format of Smart Init File
  • Class Statement
  • Levels (function)
  • Calc Functions
  • def calcT(arguments)
  • Helper Functions (if needed)
  • Main Declaration

15
Smart Init Inheritance
16
Format of smart init file
Class Statement and Levels
from Init import class EtaForecaster(Forecaster)
def __init__(self)
Forecaster.__init__(self, "ETA", "Eta") def
levels(self) return "MB1000", "MB950",
MB900", "MB850", "MB800", "MB750",
"MB700","MB650","MB600
17
Format of smart init file
Calc Functions
def calcSnowAmt(self, T, FzLevel, QPF, topo)
m1 less(T, 9) m2
greater_equal(T, 30) snowr T -0.5
22.5 snowr where(m1, 20, snowr)
snowr where(m2, 0, snowr) snowamt
where(less_equal(FzLevel - 1000, topo
3.048), snowr QPF, 0) return snowamt
18
Format of smart init file
Example of a helper function
def linear(self, xmin, xmax, ymin, ymax, we)
m (ymax ymin) / (xmax xmin 0.0000001)
b ymin m xmin return m we b
19
Format of smart init file
Main declaration
def main() EtaForecaster().run() if
__name__ "__main__" main()
20
calc Arguments. WARNING These are different
than smart tool arguments
21
calc Arguments (cont.)
ctime Time from the source database grid currently being calculated, as a time range tuple (startTime, endTime) in seconds since epoch
mtime Time in the destination database grid currently being calculated, as a time range tuple (startTime, endTime), in seconds since epoch
stime Number of seconds from the model basetime currently being calculated. (Seconds since the model analysis time.)
22
calc Arguments
  • NOT the Fcst database as in smart tools
  • Can use any combination of source/destination
    weather elements in the calcXXX functions.
  • At present time, cannot easily have multiple
    input source databases

23
Overriding Algorithms
  • Why override?
  • I dont like existing algorithms.
  • I need additional sensible wx elements.

def calcSnowAmt()
def calcSnowAmt()
24
Steps to Override
  • Create new smart initialization module.
  • If you modify the ones in etc/BASE they will go
    away when you upgrade!
  • Test out new smart initialization modules.
  • Put it into routine operations.

25
Format of Override File
  • Similar to existing smart init modules.
  • Subtle differences, mainly due to inheritance.

26
Format of override file
from Eta import class MyEtaForecaster(EtaForecas
ter) def __init__(self)
EtaForecaster.__init__(self) def
calcSnowAmt(self, T, QPF) m2
less_equal(T, 32) snowamt where(m2,
10.0QPF, 0) return snowamt def main()
MyEtaForecaster().run() if __name__
main__ main()
27
Testing your new module
  • Can run from command line
  • ifpInit t modeltime algFile
  • ifpInit t modeltime a algFile
  • Model time in yyyymmdd_hhmm format.
  • -a switch forces all grids to be generated
  • ifpInit t 20011116_1200 a MyEta

28
Testing your new module
  • Run from the command line to see progress and
    problems.
  • Check the log files for errors
  • /data/logfiles/dateDirectory/EtaInit
  • Check the data in the GFE.

29
Okay, it works, now what?
  • Put it into operational use by
  • Redefining INITMODULES in localConfig
  • serverConfig.INITMODULESMyEta ETA
  • del serverConfig.INITMODULESEta
  • Dont forget to disable the original module!

30
Adding New Algorithms
  • Define new algorithm module
  • In localConfig, add new weather elements to
    destination database(s) before testing.
  • Test
  • Modify localConfigs INITMODULES.

31
Adding Local Models
  • netCDF files must have certain information in
    order for GFESuite to recognize them
  • If displayable on d2d, probably close to ok.
  • Need geographic information in netCDF.
  • Inherit from Forecaster, look at Eta.py for
    example.
  • Similar procedure write module, test, modify
    INITMODULES.
  • May need to modify D2DDIRS.
  • Dont forget - you can see these models on
    GFESuite without smart init!

32
Useful functions in Init.py
def linear(self, xmin, xmax, ymin, ymax, we) --
linear interpolation def FtoK(self, t) --
convert F to Kelvin def KtoF(self, t) -- convert
Kelvin to Farhenheit def esat(self, temp) --
saturation vapor pressure def self._empty -
returns grid of all zeros def self.levels() -
returns list of levels (MB500, MB450,) def
self._minus - return grid of all 1s def
self.pres - return list of levels as numbers
(500, 450,)
33
Accessing Data Types
  • Scalar
  • T, simply a numerical grid
  • Vector
  • tuple, V0 is magnitude, V1 is direction
  • Weather
  • tuple, W0 is grid, W1 is key
  • Key is set of Weather ugly strings
  • Grid value indexed into key gives real value
  • Smart Tool lecture/lab covered specifics of types.

34
Gotchas
  • Conditional statements
  • Unlike regular Python, both the true and the
    false are always executed in where statements
  • Standard Python
  • if x ! 0 y z / xelse y 0.0
  • Numerical Python
  • where(not_equal(x, 0.0), z/x, 0.0))
    where(not_equal(x, 0.0), z/(x0.00001), 0.00)

35
Future Enhancements
  • Ability to access multiple sources
  • Useful for model blending
  • Syntax identical for numerical smart tools and
    smart initialization
  • Fairly close now.

36
Examples of Algorithms - sky
def calcSky(self, gh_c, rh_c, topo)
only use the first levels (up to MB600)
gh_c gh_c9,, rh_c rh_c9,,
rh_c where(less(rh_c, 50), 0, rh_c)
m1 logical_and(greater(rh_c, 50), less(rh_c,
70)) m2 logical_and(greater(rh_c, 70),
less(rh_c, 85)) m3 greater(rh_c, 85)
skylayer where(m1, self.linear(50, 70, 0,
25, rh_c), where(m2,
self.linear(70, 100, 25, 100, rh_c),
where(m3, 100, rh_c)))
37
Examples of Algorithms - sky
skylayer skylayer / 100 sky
skylayer0 for i in xrange(1,
skylayer.shape0) sky sky
skylayeri - sky skylayeri sky
clip(sky, 0, 1) sky sky 100
return sky
Sowhat is wrong with this algorithm?
38
Laboratory Exercises
  • Override the Eta algorithm for T
  • Simply use 2m FHAG directly
  • Enhance to use dry adiabatic rate for topo
    corrections
  • Add a new model (UKMET)
  • Add UKMET to localConfig
  • Calculate QPF, Wind, and T for UKMET
Write a Comment
User Comments (0)
About PowerShow.com