DESY superconducting SASE FEL - PowerPoint PPT Presentation

About This Presentation
Title:

DESY superconducting SASE FEL

Description:

DESY superconducting SASE FEL s Jean-Paul Carneiro DESY Hamburg – PowerPoint PPT presentation

Number of Views:117
Avg rating:3.0/5.0
Slides: 68
Provided by: DESY154
Category:

less

Transcript and Presenter's Notes

Title: DESY superconducting SASE FEL


1
DESY superconducting SASE FELs Jean-Paul
Carneiro DESY Hamburg
2
THE TESLA COLLABORATION (12 countries, 55
institutes, status 01/2004)
MEPI, Moscow ITEP, Moscow BINP, Novosibirsk BINP,
Protvino IHEP, Protvino INR, Troitsk JINR, Dubna
RWT, Hochschule, Aachen BESSY, Berlin Hahn-Meitner
Institut, Berlin Max-Born-Institut,
Berlin Technische Universität Berlin Technische
Universität Darmstadt Technische Universität
Dresden Universität Frankfurt GKSS-Forschungszentr
um Geesthacht DESY Hamburg and Zeuthen Universität
Hamburg Forschungszentrum Karlsruhe Universität
Rostock Bergische Universität-GH Wuppertal
CANDLE Yerevan Yerevan Physics Institute, Yerevan
IHEP, Beijing Tsingua University, Beijing Peking
University
CIEMAT, Madrid
Institute of Physics, Helsinki
Laboratori Nazionali di Frascati INFN
Legnaro INFN Milan INFN Rome II Sincrotrone
Trieste
PSI, Villigen
CEA/DSM DAPNIA CE-Saclay LAL Orsay IPN Orsay
Institut of Nuclear Physics, Cracow University of
Mining and Metallurgy, Cracow Soltan Institut
for Nuclear Studies, Otwock-Swierk High Pressure
Research Center, Warsaw Institute of Physics,
Warsaw Polish Atomic Energy Agency,
Warsaw Faculty of Physics, University of Warsaw
ANL, Argonne, Il FNAL, Batavia, Il MIT,
Cambridge, MA Cornell University, NJ UCLA, Los
Angeles, CA Jlab, Newport News, VA
CCLRC-Daresbury and Rutherford Appleton
Laboratory Royal Holloway, University of London
Queen Mary, University of London University
College London University of Oxford
Jean-Paul Carneiro, FNAL, 16-Sept-04
2 DESY
superconducting SASE FELs
3
OUTLINE
Basic principle of the Self Amplified
Spontaneous Emission (SASE) Description of
DESY superconducting SASE FELs Tesla Test
Facility, Phase 1 (TTF1) Tesla Test Facility,
Phase 2 (TTF2) Status of the European XFEL
Jean-Paul Carneiro, FNAL, 16-Sept-04
3 DESY
superconducting SASE FELs
4
Basic principle of SASE
Saturation
Exponential Growth
Spontaneous emission
? High peak brilliance (exceeding storage rings
by several order of magnitudes). ? High degree
of transverse coherence close to saturation
Jean-Paul Carneiro, FNAL, 16-Sept-04
4 DESY
superconducting SASE FELs
5
FEL saturation for sub-micrometer wavelengths
? Successful demonstration of FEL saturation for
sub-micrometers wavelengths LEUTL 385 nm
(Sept. 2000) TTF1 shortest wavelengths
obtained at TTF1 at DESY (1st saturation _at_ 98
nm in Sept. 2001) saturation obtained from 80
nm to 120 nm
Jean-Paul Carneiro, FNAL, 16-Sept-04
5
DESY superconducting SASE FELs
6
Tesla Test Facility, Phase 1
First beam in 1996 with a thermoionic gun
Operated from Dec. 1998 to Nov. 2002 using the
FNAL photo-injector Total length of the
accelerator 120 meters, Energy 220-270 MeV.
BC2
Booster Cavity
BC1
ACC1
ACC2
To FEL diagnostics
UNDULATOR
RF GUN
Dump
Jean-Paul Carneiro, FNAL, 16-Sept-04
6 DESY
superconducting SASE FELs
7
Tesla Test Facility, Phase 1
Photo-injector, Capture Cavity and Cryo-Modules
Undulator
Jean-Paul Carneiro, FNAL, 16-Sept-04
7 DESY
superconducting SASE FELs
8
Tesla Test Facility, Phase 1
BC2
Booster Cavity
BC1
ACC1
ACC2
To FEL diagnostics
UNDULATOR
RF GUN
Dump
Jean-Paul Carneiro, FNAL, 16-Sept-04
8 DESY
superconducting SASE FELs
9
Tesla Test Facility, Phase 1 / BC2 compression
upstream BC2
downstream BC2
Jean-Paul Carneiro, FNAL, 16-Sept-04
9
DESY superconducting SASE FELs
10
Tesla Test Facility, Phase 1 / Radiation
Characteristics
Photons
Radiation wavelength 80-120 nm FWHM radiation
pulse duration 30-100 fs Energy in the
radiation pulse 30-100 µJ Radiation peak
power level 1.5 GW
BC2
Booster Cavity
BC1
ACC1
ACC2
To FEL diagnostics
UNDULATOR
RF GUN
Dump
ASTRA
ELEGANT
ASTRA
Reference http//www.desy.de/s2e-simu (TTF1
Start-to-End Simulations of SASE FEL at the
TESLA Test Facility, Phase 1, DESY PREPRINT
03-197, M. Dohlus, et Al.)
Jean-Paul Carneiro, FNAL, 16-Sept-04
10
DESY superconducting SASE FELs
11
Tesla Test Facility, Phase 1 / FEL saturation
Average energy in the radiation pulse Vs active
undulator length (numerical simulations with the
FAST code)
Courtesy of M. Yurkov
Jean-Paul Carneiro, FNAL, 16-Sept-04
11
DESY superconducting SASE FELs
12
Tesla Test Facility, Phase 1 / FEL radiation
Measurement of transverse coherence of the TTF1
FEL radiation
Courtesy of R. Ischebeck
Jean-Paul Carneiro, FNAL, 16-Sept-04
12 DESY
superconducting SASE FELs
13
Tesla Test Facility, Phase 1 / Ablation experiment
Au film (15 nm) on Si substrate irradiated by a
single SASE pulse
Courtesy of J. Krzywinski
l 98 nm, W100 TW/cm2
Jean-Paul Carneiro, FNAL, 16-Sept-04
13 DESY
superconducting SASE FELs
14
Tesla Test Facility, Phase 1 / Résumé
TTF phase 1 has been concluded successfully
? Saturation observed in the wavelength of
80-120 nm ? Peak brilliance as expected
? 1.5 GW of peak power in flashes of 30 -100
fs ? Good agreement between observations
and simulation codes (ASTRA / ELEGANT /
FAST)
Jean-Paul Carneiro, FNAL, 16-Sept-04
14 DESY
superconducting SASE FELs
15
Tesla Test Facility, Phase 2
TTF Phase 2 is an extension of TTF Phase 1 to
shorter wavelengths as low as 6 nm. Total
length of the accelerator 250 meters, Energy
1 GeV.
BC2
BC3
To FEL diagnostics
ACC2
ACC3
ACC4
ACC5
ACC6
ACC1
RF GUN
UNDULATOR
S.H.
Dump
Jean-Paul Carneiro, FNAL, 16-Sept-04
15 DESY
superconducting SASE FELs
16
Tesla Test Facility, Phase 2 / Longitudinal Phase
Space
upstream 3.9 GHz cavity
downstream 3.9 GHz
Jean-Paul Carneiro, FNAL, 16-Sept-04
16 DESY
superconducting SASE FELs
17
Tesla Test Facility, Phase 2 / Longitudinal Phase
Space
downstream BC2
downstream BC3
Jean-Paul Carneiro, FNAL, 16-Sept-04
17 DESY
superconducting SASE FELs
18
Tesla Test Facility, Phase 2 / Longitudinal Phase
Space
Jean-Paul Carneiro, FNAL, 16-Sept-04
18 DESY
superconducting SASE FELs
19
Tesla Test Facility, Phase 2 / Slice emittance
Jean-Paul Carneiro, FNAL, 16-Sept-04
19 DESY
superconducting SASE FELs
20
Tesla Test Facility, Phase 2
Photons
Radiation wavelength 6 nm FWHM radiation
pulse duration 200 fs Radiation peak power
level 2.8 GW
To FEL diagnostics
BC2
BC3
ACC2
ACC3
ACC4
ACC5
ACC6
ACC1
RF GUN
UNDULATOR
S.H.
Dump
Reference http//www.desy.de/s2e-simu (TTF2
Optimized Version, P. Piot et Al. )
Jean-Paul Carneiro, FNAL, 16-Sept-04
20 DESY superconducting
SASE FELs
21
Tesla Test Facility, Phase 2 / Present Status
3.9 GHz cavity and ACC6 not installed (2006).
To FEL diagnostics
BC2
BC3
ACC2
ACC3
ACC4
ACC5
ACC1
RF GUN
UNDULATOR
Dump
Injector Conditioning from Jan. 2004 to June
2004 (dump downstream ACC2). Shutdown from June
2004 to Aug. 2004. Re-commissioning since Sept
(dump downstream ACC5 for dark current studies).
Cryostat cooled at 2 K from April to
June. RF Modulator 3 and 2 (Gun, ACC1) OK,
Mod. 5 and 4 (ACC2/3, ACC4/5/6) OK soon.
Vacuum gt 100 ion pumps, gt 50 TSP, OK.
Diagnostics Cameras OK, Toroids OK, BPM
installed (electronics available end 2004).
Jean-Paul Carneiro, FNAL, 16-Sept-04
21 DESY
superconducting SASE FELs
22
Tesla Test Facility, Phase 2 / Status
RF Gun ACC1
TTF2 RF GUN
Jean-Paul Carneiro, FNAL, 16-Sept-04
22 DESY superconducting
SASE FELs
23
Tesla Test Facility, Phase 2 / Status
3.9 GHz cavity section and BC2
FODO lattice ACC2
Jean-Paul Carneiro, FNAL, 16-Sept-04
23 DESY
superconducting SASE FELs
24
Tesla Test Facility, Phase 2 / Status
End ACC3 BC3
ACC4 ACC5
Jean-Paul Carneiro, FNAL, 16-Sept-04
24 DESY
superconducting SASE FELs
25
Tesla Test Facility, Phase 2 / Status
End ACC5
LOLA cavity
Jean-Paul Carneiro, FNAL, 16-Sept-04
25 DESY
superconducting SASE FELs
26
Tesla Test Facility, Phase 2 / Status
collimator section
main bypass beamline
Jean-Paul Carneiro, FNAL, 16-Sept-04
26 DESY
superconducting SASE FELs
27
Tesla Test Facility, Phase 2 / Status
undulator
beam dump
Jean-Paul Carneiro, FNAL, 16-Sept-04
27 DESY superconducting
SASE FELs
28
Courtesy of D. Kostin
TTF, Phase 2 / Modules Operating Gradients
ACC4
ACC5
ACC2
ACC1
ACC3
Jean-Paul Carneiro, FNAL, 16-Sept-04
28 DESY superconducting
SASE FELs
29
Courtesy of D. Kostin
Tesla Test Facility, Phase 2 / ACC1 Operation
EP cavity
Jean-Paul Carneiro, FNAL, 16-Sept-04
29 DESY superconducting SASE
FELs
30
Courtesy of S. Schreiber
Tesla Test Facility, Phase 2 / Laser
Laser pulse ? Short Longitudinal Pulse
Gaussian ? Transverse neither gaussian nor
flat
Jean-Paul Carneiro, FNAL, 16-Sept-04
30 DESY
superconducting SASE FELs
31
Tesla Test Facility, Phase 2 / Energy Gun Vs
Forward Power
Jean-Paul Carneiro, FNAL, 16-Sept-04
31 DESY superconducting
SASE FELs
32
Tesla Test Facility, Phase 2 / Energy Gun Vs
Launch Phase
Jean-Paul Carneiro, FNAL, 16-Sept-04
32 DESY superconducting
SASE FELs
33
Tesla Test Facility, Phase 2 / Energy Vs ACC1
Phase
Jean-Paul Carneiro, FNAL, 16-Sept-04
33 DESY superconducting
SASE FELs
34
Tesla Test Facility, Phase 2 / Energy Spread Vs
ACC1 Phase
Jean-Paul Carneiro, FNAL, 16-Sept-04
34 DESY
superconducting SASE FELs
35
Tesla Test Facility, Phase 2 / Emittance
z 19 m
Magnetic length of quads 270 mm, one common power
supply
Design phase advance 45 deg
Jean-Paul Carneiro, FNAL, 16-Sept-04
35 DESY
superconducting SASE FELs
36
TTF, Phase 2 / Emittance Measurement Method
  • Beam sizes are measured at four screens with
    fixed quadrupole currents in a FODO lattice
  • Emittance and Twiss parameters calculated from
    the measured beam sizes and beam size errors
  • FODO cell with periodic beta function is not a
    requirement for the emittance measurement

4 OTR wirescanner stations
Jean-Paul Carneiro, FNAL, 16-Sept-04
36 DESY
superconducting SASE FELs
37
Courtesy of K. Honkavaara
TTF, Phase 2 / Matched Beam in FODO
3 bunches, 1 nC Solenoids at 277 A
6.4 mm
Jean-Paul Carneiro, FNAL, 16-Sept-04
37 DESY
superconducting SASE FELs
38
Courtesy of K. Honkavaara
TTF, Phase 2 / Matched Beam in FODO
Normalized horizontal and vertical emittances vs.
solenoid current. This data is still subject to
further analysis, and thus preliminary!
Simulation by Y. Kim
  • Three different image analysis methods used to
    determine the beam sizes
  • Since a systematic study of beam size errors is
    not finished yet, a conservative 10 beam size
    error is assumed

zoom
Jean-Paul Carneiro, FNAL, 16-Sept-04
38 DESY superconducting
SASE FELs
39
Tesla Test Facility, Phase 2 / First Light
Scenarios
  • Nominal Operation
  • linearized compression (less sensitive to CSR and
    Space Charge)
  • long SASE pulse (200 fs FWHM)
  • First Light Scenarios
  • 3.9 GHz cavity not available
  • 445 MeV, 30 nm
  • short SASE pulse (50 fs FWHM)
  • (1) E. Saldin, E. Schneidmiller, M. Yurkov,
    Expected Properties of the Radiation from the
    VUV-FEL at DESY (Femtosecond Mode of Operation),
    Proc. FEL 2004, Trieste, Italy.

TTF1 like operation (1) Q0.5 nC, laser 4 ps
RMS, BC2 BC3
Velocity Bunching (2) Q1.0 nC, laser 4 ps
RMS, No Chicanes
Jean-Paul Carneiro, FNAL, 16-Sept-04
39 DESY
superconducting SASE FELs
40
Tesla Test Facility, Phase 2 / Velocity Bunching
ASTRA SIMULATIONS RMS bunch length Vs Phase of
First Cavity of ACC1
Jean-Paul Carneiro, FNAL, 16-Sept-04
40 DESY superconducting
SASE FELs
41
Tesla Test Facility, Phase 2 / Velocity Bunching
Case Q 1 nC
ELEGANT OUTPUT ENTRANCE UNDULATOR(Z203 m)
GENESIS OUTPUT (B. Faatz)
Jean-Paul Carneiro, FNAL, 16-Sept-04
41 DESY
superconducting SASE FELs
42
Tesla Test Facility, Phase 2 / Velocity Bunching
Pyro detector / No velocity buncing
Pyro detector / With velocity bunching
Jean-Paul Carneiro, FNAL, 16-Sept-04
42 DESY
superconducting SASE FELs
43
Tesla Test Facility, Phase 2 / Velocity Bunching
Energy Vs Phase First Cavity ACC1
Energy Spread Vs Phase First Cavity ACC1
Jean-Paul Carneiro, FNAL, 16-Sept-04
43 DESY superconducting SASE
FELs
44
Tesla Test Facility, Phase 2 / Velocity Bunching
Quad Scan (Q3UBC2 / Screen 3SBC2 / L 2.7
meters / Q 1 nC) Normalized Emittance from Quad
Scan 13 mm-mrad
Jean-Paul Carneiro, FNAL, 16-Sept-04
44 DESY superconducting
SASE FELs
45
Tesla Test Facility, Phase 2 / Résumé
First results from TTF phase 2 encouraging
? Saturation at 30 nm foreseen for late 2004 /
early 2005 ? Shortest wavelengths and long
bunch train ? Operation with 3.9 Ghz
cavity and ACC6 in 2006
Jean-Paul Carneiro, FNAL, 16-Sept-04
45 DESY superconducting
SASE FELs
46
XFEL / Version ESFRI workshop (Oct. 2003)
Total length of the facility 3.3 km ( 2km
tunnel), Energy 20 GeV. Version presented at
the European Strategy Forum on Research
Infrastructures (ESFRI, 30-31 Oct. 2003,
DESY Hamburg)
BC1
BC2
UNDULATOR
ACC2
S. H.
ACC5
ACC57
ACC1
ACC3
ACC4
RF GUN
Jean-Paul Carneiro, FNAL, 16-Sept-04
46 DESY
superconducting SASE FELs
47
XFEL / Entrance undulator
Current distribution
Jean-Paul Carneiro, FNAL, 16-Sept-04
47 DESY
superconducting SASE FELs
48
XFEL / Entrance undulator
slice emittance
Jean-Paul Carneiro, FNAL, 16-Sept-04
48 DESY superconducting
SASE FELs
49
XFEL / FEL Radiation
Photons
Radiation wavelength 0.1 nm FWHM radiation
pulse duration 100 fs Radiation peak power
level 24 GW
BC1
BC2
UNDULATOR
ACC2
S. H.
ACC5
ACC57
ACC1
ACC3
ACC4
RF GUN
Reference http//www.desy.de/s2e-simu (XFEL
ESFRI Version, Y. Kim / T. Limberg )
Jean-Paul Carneiro, FNAL, 16-Sept-04
49 DESY
superconducting SASE FELs
50
CONLUSION
TTF1, TTF2 and XFEL ?TTF1 Saturation at 98
nm in Sept. 2001 good agreement with
simulation codes great success for the TESLA
collaboration. ?TTF2 good results TTF1 good
results conditioning TTF2 very promising
for TTF2 operation (6 nm in 2006). ?XFEL
good results TTF2 good European cooperation
European XFEL in DESY Hamburg in 2012.
Major progress concerning a Superconducting
Linear Collider ? 35 MV/m measured in April
2004 at TTF2 with the 5th cavity of ACC1
operating with and without beam.
Jean-Paul Carneiro, FNAL, 16-Sept-04
50 DESY
superconducting SASE FELs
51
EXTRA SLIDES
PITZ Coupling Slot Fermilab RF Gun G3
Superstructures Old XFEL version (workshop
Aug. 2003, DESY Zeuthen)
Jean-Paul Carneiro, FNAL, 16-Sept-04
51 DESY
superconducting SASE FELs
52
PITZ Photo-Injector (DESY Zeuthen)
Civil construction started in 1999 and RF gun
conditioning started in Oct. 2001 First beam
Jan 2002 RF gun delivered to DESY Hamburg in
Nov. 2003
RF GUN (with coaxial input coupler) 1.5 cells,
p-mode, 1.3 GHz 40 MV/m, 3 MW
Dipole
Quadrupole triplet
Faraday Cup
SOLENOIDES
Faraday Cup
LASER and CATHODE 263 nm Cs2Te photo-cathode
Main PITZ results Max energy 4.7 MeV Min
energy spread 33 keV/c (1 nC) Min bunch
length 6.31.4 mm Min Normalized Emittance
1.5 mm-mrad in X 1.9 mm-mrad in Y
Operation without beam at 10 Hz, 900µs and 3 MW
(27 kW)
Jean-Paul Carneiro, FNAL, 16-Sept-04
52 DESY
superconducting SASE FELs
53
PITZ Photo-Injector
Jean-Paul Carneiro, FNAL, 16-Sept-04
53 DESY
superconducting SASE FELs
54
PITZ Photo-Injector / RF Gun during installation
Jean-Paul Carneiro, FNAL, 16-Sept-04
54 DESY
superconducting SASE FELs
55
PITZ Photo-Injector / ANSYS (F. Marhauser, BESSY)
14 water channels (1 in the back plane going
twice around, 4 around the half cell, 7 around
the full cell, 1 in the front plane and 1 in the
iris making three loops around it) Max. water
flow rate per channel
with max. flow velocity and
channel cross section
Total Maximum water flow rate

with
Jean-Paul Carneiro, FNAL, 16-Sept-04
55 DESY superconducting
SASE FELs
56
PITZ Photo-Injector / Water Cooling System
Jean-Paul Carneiro, FNAL, 16-Sept-04
56 DESY
superconducting SASE FELs
57
PITZ Photo-Injector / RF Gun operation at 10 Hz
Temperature Vs RF pulse length
Temperature Vs mean power
Jean-Paul Carneiro, FNAL, 16-Sept-04
57 DESY
superconducting SASE FELs
58
DETUNING OF THE PITZ GUN WITH LONG RF PULSES
Reflected power
Jean-Paul Carneiro, FNAL, 16-Sept-04
58 DESY
superconducting SASE FELs
59
PITZ Photo-injector / ANSYS simulations at 27 kW
We operated at PITZ the TTF2 RF gun at 10 Hz,
900 µs, 3.0 MW. Stable operation could be
reached for few minutes before vacuum interlocks.
More conditioning is still needed at this mean
power.
Jean-Paul Carneiro, FNAL, 16-Sept-04
59 DESY
superconducting SASE FELs
60
PITZ Photo-injector / ANSYS simulations at 130 kW
At 50 Hz operation, ANSYS predicts temperatures
in the waveguide iris of 170 C and stresses
of 130 MPa which are not tolerable ?The
operation at 50 Hz would necessitate adding more
cooling channels.
Jean-Paul Carneiro, FNAL, 16-Sept-04
60 DESY superconducting
SASE FELs
61
Courtesy of D. Lipka
PITZ Photo-Injector / Longitudinal Momentum
Mean momentum vs RF phase
4.72 MeV/c
f0, deg
RMS momentum spread vs RF phase
33 keV/c
f0, deg
Jean-Paul Carneiro, FNAL, 16-Sept-04
61 DESY superconducting
SASE FELs
62
Courtesy of F. Stephan
PITZ Photo-Injector / Longitudinal Profile
Cherenkov radiation use of aerogel SiO2 ,
refractive index 1.03
Bunch length (mm) in RMS 90
Minimum bunch length FWHM (21.04 0.45stat
4.14syst) ps (6.31 0.14stat
1.24syst) mm
f0, deg
Jean-Paul Carneiro, FNAL, 16-Sept-04
62 DESY superconducting
SASE FELs
63
Courtesy of F. Stephan
PITZ Photo-Injector / Emittance Vs Bucking
1.7
1.5
WR1.2 (Spring 8, 14 MeV)
Jean-Paul Carneiro, FNAL, 16-Sept-04
63 DESY superconducting
SASE FELs
64
PITZ Photo-injector / Résumé
  • ? RF gun conditioned and delivered to TTF2.
  • ? Conditioning of new RF gun started in Jan. 2004
  • ? Next steps
  • reach 1.5 mm-mrad using homogenous laser
    profile at 40 MV/m.
  • reach 1.2 mm-mrad using 2 ps rise/fall
    time (for TTF2)
  • reach 0.9 mm-mrad (for XFEL) using 60 MV/m
    (10 MW klystron)

m
PITZ upgrade (2004 16 MeV, 2005 40 MeV)
Gun
Booster
64
65
Coupling slot Fermilab RF Gun G3
Injector commissioning (including FODO lattice)
from Jan. to June 2004 Shutdown from June to
August 2004 (vacuum work, etc) Injector
re-commissioning started in Sept. 2004
Jean-Paul Carneiro, FNAL, 16-Sept-04
65 DESY
superconducting SASE FELs
66
SUPERSTRUCTURES
From J. Sekutowicz et Al., PRST-AB, Vol. 7,
(2004) Superstuctures now 27 Nb cells
connected by ?/2 long tubes later 29 cells
Advantages (compared to classical 9 cell
TESLA cavity) reduce the number of
fundamental power couplers ? space saving in
the TESLA tunnel (up to 1.8 km) Results of 2
superstructures 27 tested in TTF1 ? field
flatness lt 2, good HOM damping ?
bunch-to-bunch energy variation ?
encouraging results
(TESLA SPECIFICATION)
Jean-Paul Carneiro, FNAL, 16-Sept-04
66 DESY
superconducting SASE FELs
67
XFEL / Old Version (Aug. 2003)
Version presented at the workshop Start-to-End
Simulations of X-RAY FELs (Aug. 2003, DESY
Zeuthen) Idea extension of TTF2 at 20 GeV
with 3rd bunch compressor.
BC1
BC2
BC3
ACC2
ACC3
ACC4
ACC1
ACC7
ACC8
ACC57
RF GUN
S.H.
UNDULATOR
Jean-Paul Carneiro, FNAL, 16-Sept-04
67 DESY
superconducting SASE FELs
Write a Comment
User Comments (0)
About PowerShow.com