Sparsity Control for Robust Principal Component Analysis - PowerPoint PPT Presentation

1 / 15
About This Presentation
Title:

Sparsity Control for Robust Principal Component Analysis

Description:

Title: PowerPoint Presentation Last modified by: Georgios Giannakis Created Date: 1/1/1601 12:00:00 AM Document presentation format: Letter Paper (8.5x11 in) – PowerPoint PPT presentation

Number of Views:82
Avg rating:3.0/5.0
Slides: 16
Provided by: eduu95
Category:

less

Transcript and Presenter's Notes

Title: Sparsity Control for Robust Principal Component Analysis


1
Sparsity Control for Robust Principal Component
Analysis
  • Gonzalo Mateos and Georgios B. Giannakis
  • ECE Department, University of Minnesota
  • Acknowledgments NSF grants no. CCF-1016605,
    EECS-1002180

Asilomar Conference November 10, 2010
2
Principal Component Analysis
  • Motivation (statistical) learning from
    high-dimensional data
  • Principal component analysis (PCA) Pearson1901
  • Extraction of low-dimensional data structure
  • Data compression and reconstruction
  • PCA is non-robust to outliers Jolliffe86
  • Our goal robustify PCA by controlling outlier
    sparsity

2
3
Our work in context
  • Contemporary applications
  • Anomaly detection in IP networks Huang et
    al07, Kim et al09
  • Video surveillance, e.g., Oliver et al99
  • Robust PCA
  • Robust covariance matrix estimators
    Campbell80, Huber81
  • Computer vision Xu-Yuille95, De la
    Torre-Black03
  • Low-rank matrix recovery from sparse errors
    Wright et al09
  • Hubers M-class and sparsity in linear regression
    Fuchs99

3
4
PCA formulations
  • Training data
  • Minimum reconstruction error
  • Dimensionality reduction operator
  • Reconstruction operator
  • Maximum variance
  • Factor analysis model

Solution
4
5
Robustifying PCA
  • Least-trimmed squares (LTS) regression
    Rousseeuw87

LTS-based PCA for robustness
(LTS PCA)
is the -th order statistic among
Trimming constant determines breakdown point
  • Q How should we go about minimizing ?

(LTS PCA) is nonconvex existence of
minimizer(s)?
A Try all subsets of size , solve, and
pick the best
  • Simple but intractable beyond small problems

5
6
Modeling outliers
inlier
  • Introduce auxiliary variables s.t.

outlier
  • Inliers obey outliers
    something else
  • Inlier noise are zero-mean i.i.d.
    random vectors
  • Remarks
  • and are
    unknown
  • If outliers sporadic, then vector is sparse!

6
7
LTS PCA as sparse regression
  • Lagrangian form

(P0)
  • Justifies the model and its estimator (P0) ties
    sparsity with robustness

7
8
Just relax!
  • (P0) is NP-hard relax

(P2)
  • Role of sparsity controlling is central
  • Q Does (P2) yield robust estimates ?

A Yap! Huber estimator is a special case
9
Entrywise outliers
  • Use -norm regularization

(P1)
10
Alternating minimization
(P1)
10
11
Refinements
  • Nonconvex penalty terms approximate better
    in (P0)

11
12
Online robust PCA
  • Motivation Real-time data and memory limitations
  • Exponentially-weighted robust PCA

12
13
Video surveillance
13
Data http//www.cs.cmu.edu/ftorre/
14
Online PCA in action
  • Inliers
  • Outliers
  • Figure of merit angle between and

14
15
Concluding summary
  • Sparsity control for robust PCA
  • LTS PCA as -(pseudo)norm regularized regression
    (NP-hard)
  • Relaxation (group)-Lassoed PCA M-type
    estimator
  • Sparsity controlling role of central
  • Batch and online robust PCA algorithms
  • i) Outlier identification, ii) Robust subspace
    tracking
  • Refinements via nonconvex penalty terms
  • Tests on real video surveillance data for anomaly
    extraction
  • Ongoing research
  • Preference measurement conjoint analysis and
    collaborative filtering
  • Robustifying kernel PCA and blind dictionary
    learning

15
Write a Comment
User Comments (0)
About PowerShow.com