Queues - PowerPoint PPT Presentation

About This Presentation
Title:

Queues

Description:

CSC 221: Algorithms and Recursion - Ilam University Staff ... ... Queues – PowerPoint PPT presentation

Number of Views:198
Avg rating:3.0/5.0
Slides: 26
Provided by: Willia600
Category:
Tags: circular | queue | queues

less

Transcript and Presenter's Notes

Title: Queues


1
Queues
2
Queue Definition
  • Ordered list with property
  • All insertions take place at one end (tail)
  • All deletions take place at other end (head)
  • Queue Q (a0, a1, , an-1)
  • a0 is the front element, an-1 is the tail, and
    ai is behind ai-1 for all i, 1 lt i lt n

3
Queue Definition
  • Because of insertion and deletion properties,
  • Queue is very similar to
  • Line at the grocery store
  • Cars in traffic
  • Network packets
  • .
  • Also called first-in first out lists

4
Queue Implementation Ideas
  • Container type class for holding data
  • Array versus Linked List? Whos better?
  • Head index pointer
  • Position right before first element in queue
  • Tail index pointer
  • Position of last element in queue

5
Array-Based Queue Definition
  • template ltclass KeyTypegt
  • class Queue
  • public
  • Queue(int MaxQueueSize DefaultSize)
  • Queue()
  • bool IsFull()
  • bool IsEmpty()
  • void Add(const KeyType item)
  • KeyType Delete(KeyType item)
  • private
  • void QueueFull() // error handling
  • void QueueEmpty() // error handling
  • int head, tail
  • KeyType queue
  • int MaxSize

6
Queue Implementation
  • Constructor
  • template ltclass KeyTypegt
  • QueueltKeyTypegtQueue(int MaxQueueSize)
    MaxSize(MaxQueueSize)
  • queue new KeyTypeMaxSize
  • head tail -1

7
Queue Implementation
  • Destructor
  • template ltclass KeyTypegt
  • QueueltKeyTypegtQueue()
  • delete queue
  • head tail -1

8
Queue Implementation
  • IsFull() and IsEmpty()
  • template ltclass KeyTypegt
  • bool QueueltKeyTypegtIsFull()
  • return (tail (MaxSize-1))
  • template ltclass KeyTypegt
  • bool QueueltKeyTypegtIsEmpty()
  • return (head tail)

9
Queue Implementation
  • Add() and Delete()
  • template ltclass KeyTypegt
  • void QueueltKeyTypegtAdd (const KeyType item)
  • if (IsFull()) QueueFull() return
  • else tail tail 1 queuetail item
  • template ltclass KeyTypegt
  • KeyType QueueltKeyTypegtDelete(KeyType item)
  • if (IsEmpty()) QueueEmpty() return 0
  • else head head 1 item queuehead
    return item

10
Example Job Scheduling
  • OS has to manage how jobs (programs) are executed
    on the processor 2 typical techniques
  • -Priority based Some ordering over of jobs
    based on importance
  • (Professor Xs jobs should be allowed to run
    first over Professor Y).
  • -Queue based Equal priority, schedule in first
    in first out order.

11
Queue Based Job Processing
Front Rear Q0 Q1 Q2 Q3 Comments
-1 -1 Initial
-1 0 J1 Job 1 Enters
-1 1 J1 J2 Job 2 Enters
-1 2 J1 J2 J3 Job 3 Enters
0 2 J2 J3 Job 1 Leaves
0 3 J2 J3 J4 Job 4 Enters
1 3 J3 J4 Job 2 Leaves
MaxSize 4
12
Job Processing
  • When J4 enters the queue, rear is updated to 3.
  • When rear is 3 in a 4-entry queue, run out of
    space.
  • The array may not really be full though, if head
    is not
  • -1.
  • Head can be gt -1 if items have been removed from
    queue.
  • Possible Solution When rear (maxSize 1)
    attempt to shift data forwards into empty spaces
    and then do Add.

13
Queue Shift
  • private void shiftQueue(KeyType queue, int
    head, int tail)
  • int difference head (-1) // head 1
  • for (int j head 1 j lt maxSize j)
  • queuej-difference queuej
  • head -1
  • tail tail difference

14
Queue Shift
  • Worst Case For Queue Shift
  • Full Queue
  • Alternating Delete and Add statements

Front Rear Q0 Q1 Q2 Q3 Comments
-1 3 J1 J2 J3 J4 Initial
0 3 J2 J3 J4 Job 1 Leaves
-1 3 J2 J3 J4 J5 Job 5 Enters
0 3 J3 J4 J5 Job 2 Enters
-1 3 J3 J4 J5 J6 Job 6 Leaves
15
Worst Case Queue Shift
  • Worst Case
  • Shift entire queue Cost of O(n)
  • Do every time perform an add
  • Too expensive to be useful
  • Worst case is not that unlikely, so this suggests
    finding an alternative implementation.

16
Circular Array Implementation
  • Basic Idea Allow the queue to wrap-around
  • Implement with addition mod size
  • tail (tail 1) queueSize

4
4
J4
3
3
J3
J2
J1
2
2
N-2
J1
J2
N-2
J3
1
N-1
1
N-1
0
0
17
Linked Queues
  • Problems with implementing queues on top of
    arrays
  • Sizing problems (bounds, clumsy resizing, )
  • Non-circular Array Data movement problem
  • Now that have the concepts of list nodes, can
    take advantage of to represent queues.
  • Need to determine appropriate way of
  • Representing front and rear
  • Facilitating node addition and deletion at the
    ends.

18
Linked Queues
Add(Hat) Add(Mat) Add(Cat) Delete()
19
Linked Queues
  • Class QueueNode
  • friend class Queue
  • public
  • QueueNode(int d, QueueNode l)
  • private
  • int data
  • QueueNode link

20
Linked Queues
  • class Queue
  • public
  • Queue()
  • Queue()
  • void Add(const int)
  • int Delete(int)
  • bool isEmpty()
  • private
  • QueueNode front
  • QueueNode rear
  • void QueueEmpty()

21
Linked Queues
  • QueueQueue()
  • front 0
  • rear 0
  • bool QueueisEmpty()
  • return (front 0)

0
0
22
Linked Queues
  • void QueueAdd(const int y)
  • // Create a new node that contains data y
  • // Has to go at end
  • // Set current rear link to new node pointer
  • // Set new rear pointer to new node pointer
  • rear rear-gtlink new QueueNode(y, 0)

MAT
23
Linked Queues
  • int QueueDelete(int retValue)
  • // handle empty case
  • if (isEmpty()) QueueEmpty() return 0
  • QueueNode toDelete front
  • retValue toDelete.data
  • front toDelete-gtlink
  • delete toDelete
  • return retValue

returnValue
HAT
MAT
24
Queue Destructor
  • Queue destructor needs to remove all nodes from
    head to tail.

MAT
if (front) QueueNode temp while (front !
rear) temp front front front -gt
link delete temp delete front front rear
0
0
0
25
Front vs Delete
  • Implementation as written has to remove the item
    from the queue to read data value.
  • Some implementations provide two separate
    functions
  • Front() which returns the data in the first
    element
  • Delete() which removes the first element from the
    queue, without returning a value.
Write a Comment
User Comments (0)
About PowerShow.com