LR at Haifa 1 - PowerPoint PPT Presentation

1 / 30
About This Presentation
Title:

LR at Haifa 1

Description:

: Reuven Bar-Yehuda CS Technion IIT Slides and papers at: – PowerPoint PPT presentation

Number of Views:65
Avg rating:3.0/5.0
Slides: 31
Provided by: technion
Category:

less

Transcript and Presenter's Notes

Title: LR at Haifa 1


1
????? ?? ????? ???? ????? ?????? ?????
??????????? ???
  • Reuven Bar-Yehuda
  • CS Technion IIT
  • Slides and papers at
  • http//www.cs.technion.ac.il/reuven

2
Example VC
  • Given a graph G(V,E) penalty pv? Z for each v ?
    V
  • Min ? pvxv
  • S.t. xv? 0,1
  • xv xu ? 1 ?v,u? E

3
Linear Programming (LP) Integer
Programming (IP)
  • Given a profit penalty vector p.
  • MaximizeMinimize px
  • Subject to Linear Constraints F(x)
  • IP where x is an integer vector is a constraint

4
Example VC
  • Given a graph G(V,E) and penalty vector p? Zn
  • Minimize px
  • Subject to x? 0,1n
  • xi xj ? 1 ?i,j? E

5
Example SC
  • Given a Collection S1, S2,,Sn of all subsets of
    1,2,3,,m and penalty vector p? Zn
  • Minimize px
  • Subject to x? 0,1n
  • ?xi ? 1 ?j1..m
  • j? Si

S1
1
2
S2
3
S3
m
Sn
6
Example Min Cut
  • Given Network N(V,E) s,t ? V and capacity vector
    p? ZE
  • Minimize px
  • Subject to x? 0,1E
  • ?xe ? 1 ?s?t path P
  • e? P

7
Example Shortest Path
  • Given digraph G(V,E) s,t ? V and length vector p?
    ZE
  • Minimize px
  • Subject to x? 0,1E
  • ?xe ? 1 ?s?t cut P
  • e? P

8
Example MST (Minimum Spanning Tree)
  • Given graph G(V,E) s,t ? V and length vector p?
    ZE
  • Minimize px
  • Subject to x? 0,1E
  • ?xe ? 1 ?cut P
  • e? P

9
Example Minimum Steiner Tree
  • Given graph G(V,E) T?V and length vector p? ZE
  • Minimize px
  • Subject to x? 0,1E
  • ?xe ? 1 ?Ts cut P
  • e? P

10
Example Generalized Steiner Forest
  • Given graph G(V,E) T1T1Tk ? V
  • and length vector p? ZE
  • Min px
  • S.t. x? 0,1E
  • ?xe ? 1 ?i ?Tis cut P
  • e? P

11
Example IS (Maximum Independent Set)
  • Given a graph G(V,E) and profit vector p? Zn
  • Maximaize px
  • Subject to x? 0,1n
  • xi xj ? 1 ?i,j? E

12
Maximum Independent Set in Interval Graphs
  • Activity9
  • Activity8
  • Activity7
  • Activity6
  • Activity5
  • Activity4
  • Activity3
  • Activity2
  • Activity1



  • time
  • Maximize
    s.t. For each instance I
  • For each time t

13
The Local-Ratio Technique Basic
definitions
  • Given a profit penalty vector p.
  • Minimize Maximize px
  • Subject to feasibility constraints F(x)
  • x is r-approximation if F(x) and px ? r px
  • An algorithm is r-approximation if for any p, F
  • it returns an r-approximation

14
The Local-Ratio Theorem
  • x is an r-approximation with respect to p1
  • x is an r-approximation with respect to p- p1
  • ?
  • x is an r-approximation with respect to p
  • Proof (For minimization)
  • p1 x ? r p1
  • p2 x ? r p2
  • ?
  • p x ? r ( p1
    p2)
  • ? r ( p1 p2 )

15
Special case Optimization is
1-approximation
  • x is an optimum with respect to p1
  • x is an optimum with respect to p- p1
  • x is an optimum with respect to p

16
A Local-Ratio Schema for
MinimizationMaximization problems
  • Algorithm r-ApproxMinMax( Set, p )
  • If Set F then return F
  • If ?I ? Set p(I)0 then return I ?
    r-ApproxMin( Set-I, p )
  • If ? I ? Set p(I) ? 0 then return
    r-ApproxMax( Set-I, p )
  • Define good p1
  • REC r-ApproxMaxMin( Set, p- p1 )
  • If REC is not an r-approximation w.r.t. p1 then
    fix it
  • return REC

17
The Local-Ratio Theorem Applications
  • Applications to some optimization algorithms (r
    1)
  • ( MST) Minimum Spanning Tree (Kruskal)
  • ( SHORTEST-PATH) s-t Shortest Path (Dijkstra)
  • (LONGEST-PATH) s-t DAG Longest Path (Can be
    done with dynamic programming)
  • (INTERVAL-IS) Independents-Set in Interval
    Graphs Usually done with dynamic programming)
  • (LONG-SEQ) Longest (weighted) monotone
    subsequence (Can be done with dynamic
    programming)
  • ( MIN_CUT) Minimum Capacity s,t Cut (e.g.
    Ford, Dinitz)
  • Applications to some 2-Approximation algorithms
    (r 2)
  • ( VC) Minimum Vertex Cover (Bar-Yehuda and
    Even)
  • ( FVS) Vertex Feedback Set (Becker and Geiger)
  • ( GSF) Generalized Steiner Forest (Williamson,
    Goemans, Mihail, and Vazirani)
  • ( Min 2SAT) Minimum Two-Satisfibility
    (Gusfield and Pitt)
  • ( 2VIP) Two Variable Integer Programming
    (Bar-Yehuda and Rawitz)
  • ( PVC) Partial Vertex Cover (Bar-Yehuda)
  • ( GVC) Generalized Vertex Cover (Bar-Yehuda
    and Rawitz)
  • Applications to some other Approximations
  • ( SC) Minimum Set Cover (Bar-Yehuda and Even)
  • ( PSC) Partial Set Cover (Bar-Yehuda)
  • ( MSP) Maximum Set Packing (Arkin and Hasin)

18
The creative partfind ?-Effective weights
  • p1 is ?-Effective if every feisible solution is
    ?-approx w.r.t. p1
  • i.e. p1 x ? ? p1
  • VC (vertex cover)
  • Edge
  • Matching
  • Greedy
  • Homogeneous

19
VC Recursive implementation (edge by edge)
  • VC (V, E, p)
  • If E? return ?
  • If ? p(v)0 return vVC(V-v, E-E(v), p)
  • Let (x,y)?E
  • Let ? minp(x), p(y)
  • Define p1 (v) ? if vx or vy and 0 otherwise
  • Return VC(V, E, p- p1 )

0
0
0
?
?
0
0
0
20
VC Iterative implementation (edge by edge)
? ?
  • VC (V, E, p)
  • for each e ? E
  • let ? minp(v) v ? e
  • for each v ? e
  • p(v) p(v) - ?
  • return v p(v)0

0
0
0
?
?
0
0
0
21
Min 5xBisli8xTea12xWater10xBamba20xShampoo15x
Popcorn6xChocolate s.t. xShampoo xWater ? 1

15
22
Movie1 4 the price of 2
?
23
VC Iterative implementation (edge by edge)
? ?
  • VC (V, E, p)
  • for each e ? E
  • let ? minp(v) v ? e
  • for each v ? e
  • p(v) p(v) - ?
  • return v p(v)0

30
15
90
10
50
100
80
2
24
VC Greedy ( O(H(?)) - approximation)H(?)1/21/3
1/? O(ln ?)
  • Greedy_VC (V, E, p)
  • C ?
  • while E??
  • let varc min p(v)/d(v)
  • C C v
  • V V v
  • return C

n/? n/4 n/3 n/2 n
?
?
25
VC LR-Greedy (star by star)
  • LR_Greedy_VC (V, E, p)
  • C ?
  • while E??
  • let varc min p(v)/d(v)
  • let ? p(v)/d(v)
  • C C v
  • V V v
  • for each u ? N(v)
  • p(v) p(v) - ?
  • return C

?
?
4?
?
?
26
VC LR-Greedy by reducing 2-effective
homogeniousHomogenious all vertices have the
same greedy value
  • LR_Greedy_VC (V, E, p)
  • C ?
  • Repeat
  • Let ? Min p(v)/d(v)
  • For each v ? V
  • p(v) p(v) ? d(v)
  • Move from V to C all zero weight vertices
  • Remove from V all zero degree vertices
  • Until E?
  • Return C

3?
4?
6?
4?
5?
3?
3?
2?
27
Example MST (Minimum Spanning Tree)
  • Given graph G(V,E) s,t ? V and length vector p?
    ZE
  • Minimize px
  • Subject to x? 0,1E
  • ?xe ? 1 ?cut P
  • e? P

28
MST Recursive implementation (Homogenious)
  • MST (V, E, p)
  • If V? return ?
  • If ? self-loop e return MST(V, E-e, p)
  • If ? p(e)0 return eMST(Vshrink(e),
    Eshrink(e), p)
  • Let ? minp(e) e?E
  • Define p1 (e) ? for all e?E
  • Return MST(V, E, p- p1 )

29
MST Iterative implementation (Homogenious)
  • MST (V, E, p)
  • Kruskal

30
Some effective weights
VC IS MST S. Path Steiner FVS Min Cut
Edge 2 ? ? ? ? ? ?
Matching 2 ? ? ? ? ? ?
Odd Cycle 2-1/k ? ? ? ? ? ?
Clique (k-1)/k ? ? ? ? ? ?
Star 2 (k1)/2 ? 1 ? ? ?
Homogenious 2 k 1 ? 2 2 ?
Special trik 1
Write a Comment
User Comments (0)
About PowerShow.com