Open problems in terrestrial planet formation - PowerPoint PPT Presentation

About This Presentation
Title:

Open problems in terrestrial planet formation

Description:

Title: Building the Terrestrial Planets: Constraining Accretion in the Inner Solar System Author: MacP91 LASP Last modified by: Sean Raymond Created Date – PowerPoint PPT presentation

Number of Views:92
Avg rating:3.0/5.0
Slides: 24
Provided by: MacP153
Category:

less

Transcript and Presenter's Notes

Title: Open problems in terrestrial planet formation


1
Open problems in terrestrial planet formation
  • Sean Raymond
  • Laboratoire dAstrophysique de Bordeaux

with audience contributions welcome!
2
How did the Solar System form?
  • Simulations can roughly reproduce the masses and
    orbits of Earth and Venus (OBrien et al 2006
    Kenyon Bromley 2006 Chambers 2001 Agnor et al
    1999 Raymond et al 2006)
  • Biggest problem Mars small size (Wetherill
    1991)
  • Accretion process strongly dependent on giant
    planets (Levison Agnor 2003 Raymond et al
    2004)
  • Goal Reproduce inner solar system
  • Constrain Jup, Sats orbits at early times
  • Test relevant physics

3
Constraints
  • Masses, orbits of terrestrial planets
  • Mars small mass is a mystery (Wetherill 1991,
    Chambers 2001)
  • Very low eccentricities (OBrien et al 2006)
  • Structure of asteroid belt
  • Separation of S, C types
  • No evidence for remnant embryos (gaps)
  • Accretion timescales from Hf/W, Sm/Nd
  • Earth/Moon 50-150 Myr (Jacobsen 2005 Touboul et
    al 2007)
  • Mars 1-10 Myr (Nimmo Kleine 2007)
  • Water delivery to Earth
  • Asteroidal source explains D/H (Morbidelli et al
    2000)
  • Other models exist (Ikoma Genda 2007
    Muralidharan et al 2008)

Stronger Constraints
4
Gas giants
Earth-sized planets
Cores Embryos
Planete-simals (km)
Dust (µm)
105-7 yrs
104-5 yrs
107-8 yrs
5
Initial conditions for late-stage accretion
  • Planetary embryos (aka protoplanets) form by
    runaway and oligarchic growth Moon-Mars sized
    (105-6 yrs) (Kokubo Ida 1998, Leinhardt
    Richardson 2005)
  • Late-stage accretion starts when local mass in
    embryos and planetesimals is comparable (Kenyon
    Bromley 2006)

(Giant planets must form in few Myr, so they
affect late stages)
Kokubo Ida 2002
6
Key factors for accretion
  • 1. Giant Planets (Levison Agnor 2003)
  • Formation models predict low eccentricity
  • Nice model Jup, Sat closer than 21 MMR during
    accretion (Tsiganis et al 2005 Gomes et al 2005)
  • Perhaps in chain of resonances (Morbidelli et al
    2007)
  • 2. Disk Properties (Wetherill 1996, Raymond et al
    2005)
  • Total mass 5 Earth masses inside 4 AU
    (Weidenschilling 1977 Hayashi 1981)
  • ? r-1.5 (MMSN) or perhaps more complex (Jin et
    al 2008 Desch 2007)

7
Nice model 2 (J, S in 32 MMR)
8
Nice model 2 (J, S in 32 MMR)
  • No Mars analogs
  • Embryos in asteroid belt
  • Inconsistent with observed structure if embryo
    Mars-mass or larger

9
Nice model 2 (J, S in 32 MMR)
  • No Mars analogs
  • Embryos in asteroid belt
  • Inconsistent with observed structure if embryo
    Mars-mass or larger

10
Eccentric Jup, Sat (e00.1)
11
Eccentric Jup, Sat (e00.1)
  • Strong secular resonance (?6) at 2.2 AU
  • Mars consistently forms in correct configuration
  • Earth and Venus are dry
  • Inconsistent with Kuiper Belt structure
  • no migration of giant planets possible (Malhotra
    1995, Levison Morbidelli 2003)

12
Influence of giant planets
Raymond, OBrien, Morbidelli, Kaib 2009
13
Influence of giant planets
Hard to form low-e, highly concentrated
terrestrial planet systems
Raymond, OBrien, Morbidelli, Kaib 2009
14
Mars
  • Small Mars forms naturally if inner disk is
    truncated at 1-1.5 AU (Agnor et al 1999 Hansen
    2009)
  • Can reproduce all 4 terrestrial planets if
    embryos only existed from 0.7-1 AU (Hansen 2009)

Hansen 2009
15
Other effects
  • Gas disk effects
  • Type 1 migration (McNeil et al 2005 Morishima et
    al 2010)
  • Secular resonance sweeping (Nagasawa et al 2005
    Thommes et al 2008)
  • Collisional fragmentation (Alexander Agnor
    1998 Kokubo, Genda)

Morishima et al 2010
16
Jin et al (2008) disk
  • Assume MRI is effective in inner, outer disk but
    not in between
  • At boundary between low, high viscosity, get
    minimum in density
  • Occurs at 1.5 AU
  • Explanation for Mars small mass?

Jin et al (2008)
17
Summary
  • No tested configuration of Jup, Sat reproduces
    all constraints (Raymond et al 2009)
  • Closest is eccentric Jup, Sat but Earth is dry
    and JS not consistent with Kuiper Belt
  • Including gas disk effects doesnt solve the
    problem (Morishima et al 2010)
  • Hard to reproduce Mars small size
  • Strong constraint on Jup, Sats orbits at early
    times
  • Was there just a narrow annulus of embryos?
    (Hansen 2009)
  • Whats missing?
  • Secular resonance sweeping during disk dispersal
    (Nagasawa et al 2005, Thommes et al 2008)
  • Something else?

18
Recent progress
  • Morishima et al 2008, 2010
  • Raymond, OBrien, Morbidelli, Kaib 2009
  • Hansen 2009
  • Thommes, Nagasawa Lin 2008
  • OBrien, Morbidelli Levison 2006
  • Raymond, Quinn Lunine 2006
  • Kenyon Bromley 2006
  • Nagasawa, Thommes Lin 2005
  • Kominami Ida 2002, 2004
  • Chambers 2001
  • Agnor, Canup Levison 1999

19
Initial conditions
  • Start of chaotic growth phase (Wetherill 1985
    Kenyon Bromley 2006)
  • Equal mass in 1000-2000 planetesimals and 100
    embryos (5 ME total)
  • Embryos is Mars vicinity are 0.1-0.4 Mars masses
  • Integrate for 200 Myr with Mercury (Chambers
    1999)

20
(No Transcript)
21
Mars Low-ecc. Ast. belt Form. time Earth Water
Current JS ? ? ? ?
Eccentric JS ? ? ?
Nice model 1 ? ? ?
Nice 1 eccentric ?
Nice model 2 ? ? ?
Jin disk ? ? ?
22
Cases
  • Current Jup, Sat
  • Jup, Sat with e00.1
  • e current values after accretion
  • Nice Model 1 Jup 5.45 AU, Sat 8.12 AU, e00
  • Nice Model 2 Jup, Sat in 32 MMR, low-e
  • Disk ?r-1 and r-1.5
  • Little difference
  • Disk from Jin et al (2008)
  • Dip in ? at 1.5 AU

23
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com