4.1 Graphs of Sine and Cosine - PowerPoint PPT Presentation

1 / 41
About This Presentation
Title:

4.1 Graphs of Sine and Cosine

Description:

4.1 Graphs of Sine and Cosine OBJ: Graph sine and cosine 7 EX: Graph y =-3 + 3cos(x+ /4) - 3 5 7 4 4 4 4 4 ... – PowerPoint PPT presentation

Number of Views:105
Avg rating:3.0/5.0
Slides: 42
Provided by: WHRHS
Learn more at: http://www.whrhs.org
Category:
Tags: cosine | graphs | sine

less

Transcript and Presenter's Notes

Title: 4.1 Graphs of Sine and Cosine


1
4.1 Graphs of Sine and Cosine
  • OBJ Graph sine and cosine

2
1 DEF ? Sine Graph
  • 1
  • 0 p p 3p 2p
  • -1 2 2
  • 0 1 0 -1 0

3
1 DEF ? Sine Graph
  • 1
  • 0 p p 3p 2p
  • -1 2 2
  • 0 1 0 -1 0

4
y d a(trig b (x c))
  • a (amplitude) multiply a times (0 1 0 -1 0 1)
  • b (period) 2p
  • b
  • c (starting point)
  • d (vertical shift)

5
y sin x
  • Ref.
  • no
  • Amp.
  • 1
  • Per.
  • 2p
  • ¼ Per.
  • p/2
  • St. Pt.
  • 0
  • Vert. Sh.
  • none
  • 0 1 0 1 0
  • 1
  • 0
  • -1 p/2 3p/2 4p/2

6
2 DEF ? Cosine Graph
  • 0 p p 3p 2p
  • 2 2
  • 1 0 -1 0 1

7
2 DEF ? Cosine Graph
  • - p 0 p p 3p 2p
  • 2 2 2
  • 1 0 -1 0 1

8
DEF ? Periodic function
  • A function f with the property f(x) f(xp)
    for every real number x in the domain of f and
    for some real positive number p. The smallest
    possible positive value of p is the period of the
    function f.

9
3 EX ? Graph y 2 sin x
  • 0 p p 3p 2p
  • 2 2
  • 0 1 0 -1 0
  • 2(0 1 0 -1 0)
  • 0 2 0 -2 0

10
3 EX ? Graph y 2 sin x
  • 0 p p 3p 2p
  • 2 2
  • 0 2 0 -2 0

11
DEF ? Amplitude of Sine and Cosine
  • The graph of y a sin x or y a cos x will
    have the same shape as y sin x or y cos x,
    respectively, except with range - ? a ? ? y ? ? a
    ? . The number ? a ? is called the amplitude.

12
y d a(trig b (x c))
  • a (amplitude) multiply a times (0 1 0 -1 0 1)
  • b (period) 2p
  • b
  • c (starting point)
  • d (vertical shift)

13
4 y -2 cos x
  • 1 0 -1 0 1
  • -2(1 0 -1 0 1)
  • -2 0 2 0 -2
  • 2
  • 1
  • 0
  • -1 p/2 3p/2 4p/2
  • -2

14
4 y -2 cos x
  • Ref.
  • yes
  • Amp.
  • - 2
  • Per.
  • 2p
  • ¼ Per.
  • p/2
  • St. Pt.
  • 0
  • Vert. Sh.
  • none
  • 1 0 -1 0 1
  • -2(1 0 -1 0 1)
  • -2 0 2 0 -2
  • 2
  • 1
  • 0
  • -1 p/2 3p/2 4p/2
  • -2

15
4 y -2 cos x
  • 2
  • 1
  • 0
  • -1 p/2 3p/2 4p/2
  • -2

16
DEF ? Vertical Translation
  • A function of the form y d a sin b x or of
    the form y d a cos b x is shifted vertically
    when compared with y a sin b x or y a cos b x.

17
y d a(trig b (x c))
  • a (amplitude) multiply a times (0 1 0 -1 0 1)
  • b (period) 2p
  • b
  • c (starting point)
  • d (vertical shift)

18
5 EX ? Graph y 3 2 sin x
  • 0 p p 3p 2p
  • 2 2

19
1 DEF ? Sine Graph
  • 1
  • 0 p p 3p 2p
  • -1 2 2
  • 0 1 0 -1 0

20
3 EX ? Graph y 2 sin x
  • 0 p p 3p 2p
  • 2 2
  • 2(0 1 0 -1 0)
  • 0 2 0 -2 0

21
5 EX ? Graph y 3 2 sin x
  • 1
  • 0 p p 3p 2p
  • -1 2 2
  • 2(0 1 0 -1 0)
  • 0 2 0 -2 0

22
5 EX ? Graph y 3 2 sin x
  • 1
  • 0 p p 3p 2p
  • -1 2 2
  • 2(0 1 0 -1 0)
  • 0 2 0 -2 0
  • -3-3-3 -3 -3

23
5 EX ? Graph y 3 2 sin x
  • 1
  • 0 p p 3p 2p
  • -1 2 2
  • -3 -1 -3 -5 -3

24
DEF ? Phase Shift
  • The function y sin (x c) has the shape of
  • the basic sine graph y sin x, but with a
  • translation ? c ? units to the right if c lt 0
  • and to the left if c gt 0. The number c is
  • the phase shift of the graph. The cosine
  • graph has the same function traits.

25
y d a(trig b (x c)
  • a (amplitude) multiply a times (0 1 0 -1 0 1)
  • b (period) 2p
  • b
  • c (starting point)
  • d (vertical shift)

26
EX ? Graph y sin (x p/3)6 EX ? Graph y
4 sin (x p/3)
  • 2? 5? 8? 11? 14?
  • -1 6 6 6 6 6
  • 0 1 0 -1 0

27
6 EX ? Graph y 4 sin (x p/3)
  • 2? 5? 8? 11? 14?
  • -1 6 6 6 6 6
  • 0 1 0 -1 0
  • -1(0 1 0 -1 0
  • 0 -1 0 1 0

28
6 EX ? Graph y 4 sin (x p/3)
  • 2? 5? 8? 11? 14?
  • -1 6 6 6 6 6
  • 0 -1 0 1 0
  • 4 4 4 4 4
  • 4 3 4 5 4

29
6 EX ? Graph y 4 sin (x p/3)
  • 2? 5? 8? 11? 14?
  • -1 6 6 6 6 6
  • 4 3 4 5 4

30
EX ? Graph y 3cos (x p/4)7 EX Graph
y -3 3cos(xp/4)

31
EX ? Graph y 3cos (x p/4)7 EX Graph y
-3 3cos(xp/4)
  • -? ? 3? 5? 7?
  • 4 4 4 4 4
  • 1 0 -1 0 1

32
EX ? Graph y 3cos (x p/4)7 EX Graph y
-3 3cos(xp/4)
  • -? ? 3? 5? 7?
  • 4 4 4 4 4
  • 1 0 -1 0 1
  • 3(1 0 -1 0 1)
  • 3 0 -3 0 3

33
7 EX Graph y -3 3cos(xp/4)
  • -? ? 3? 5? 7?
  • 4 4 4 4 4
  • 3 0 -3 0 3
  • -3 -3 -3 -3 -3
  • 0 -3 -6 -3 0
  • __ __ __ __ __ __ __ __ __

34
7 EX Graph y -3 3cos(xp/4)
  • -? ? 3? 5? 7?
  • 4 4 4 4 4
  • __ __ __ __ __ __ __ __ __

35
1 EX ? Graph y -2 sin x
  • Ref, Amp
  • No, 1
  • Per
  • 2 p
  • ¼ Per 0 p p 3p 2p
  • p/2 2 2
  • St.Pt. 0
  • Vert. Shift
  • 2

36
1 EX ? Graph y -2 sin x
  • 0 p p 3p 2p
  • 2 2
  • 0 1 0 -1 0
  • -2 -2 -2 -2 -2
  • -2 -1 -2 -3 -2

37
1 EX ? Graph y -2 sin x
  • 0 p p 3p 2p
  • 2 2
  • 0 1 0 -1 0
  • -2 -2 -2 -2 -2
  • -2 -1 -2 -3 -2

38
2 EX ? Graph y 3 2 cos x
  • Ref, Amp
  • Yes, -2
  • Per
  • 2 p
  • ¼ Per 0 p p 3p 2p
  • p/2 2 2
  • St.Pt. 0
  • Vert. Shift
  • 3

39
2 EX ? Graph y 3 2 cos x
  • 0 p p 3p 2p
  • 2 2
  • 1 0 -1 0 1
  • -2(1 0 -1 0 1)
  • -2 0 2 0 -2

40
2 EX ? Graph y 3 2 cos x
  • 0 p p 3p 2p
  • -2(1 0 -1 0 1) 2
    2
  • -2 0 2 0 -2
  • 3 3 3 3 3
  • 1 3 5 3 1

41
2 EX ? Graph y 3 2 cos x
  • 0 p p 3p 2p
  • -2(1 0 -1 0 1) 2
    2
  • -2 0 2 0 -2
  • 3 3 3 3 3
  • 1 3 5 3 1
Write a Comment
User Comments (0)
About PowerShow.com