3. Chiral Perturbation Theory - PowerPoint PPT Presentation

About This Presentation
Title:

3. Chiral Perturbation Theory

Description:

S.Weinberg, Physica 96A, 327 (1979). J.Gasser and H.Leutwyler, Ann. of Phys. 158, 142 (1984). J.Gasser and H.Leutwyler, Nucl. Phys. B 250, 465, (1985). – PowerPoint PPT presentation

Number of Views:74
Avg rating:3.0/5.0
Slides: 78
Provided by: Masa65
Category:

less

Transcript and Presenter's Notes

Title: 3. Chiral Perturbation Theory


1
3. Chiral Perturbation Theory
  • S.Weinberg, Physica 96A, 327 (1979).
  • J.Gasser and H.Leutwyler, Ann. of Phys. 158, 142
    (1984).
  • J.Gasser and H.Leutwyler, Nucl. Phys. B 250, 465,
    (1985).
  • A.Pich, lecture note for Les Houches Summer
    School (hep-ph/9806303).
  • A.Manohar and H.Georgi, Nucl. Phys. B 234, 189
    (1984).
  • ???????? ?????? (???).
  • C.Rosenzweig, J.Schechter and C.G.Trahern, Phys.
    Rev. D 21, (1980).
  • P.Di Vecchia and G.Veneziano, Nucl. Phys. B 171,
    253 (1980).
  • E.Witten, Ann. of Phys. 128, 363 (1980).

2
? QCD ???????????????
3
3.1. QCD???????????? ???????
4
? QCD???????
???? ??????
5
? ?????????
????????
??????????
(vector charge)
(axial-vector charge)
6
? ?????????????
?????????
7
? ????
?????????? mu, md 5 - 10 MeV ?
???????? explicit ?????? ???(constituent)??????
??(uud), ???(udd)??? 1 GeV ?
?????????Mu, Md 300 MeV Mu, Md
QCD???????????????????
8
? ??-???????????????????
NG boson ?????????????????? ??????????????????????
????
? Chiral Perturbation Theory
?????????????? ????????????????
9
3.2. Basic Concept of the ChPT
10
? Generating Functional of QCD
current quark masses VEV of S
11
? Basic Concept of the ChPT
12
3.3. Derivative Expansion
13
? Derivative expansion
14
3.4. Order Counting
15
? M matrix element with Ne external p lines
(Ni internal p lines and NL loops)
general form of an interaction
dimension carried by the coupling
constants
16
? General expression of the matrix element
µ a common renormalization scale E a common
energy scale
? Chiral order
17
? Examples of chiral order
18
3.5. Lagrangian (leading order)
19
? Building blocks
20
p kinetic term
p mass term
p Interaction terms
21
3.6. Particle Asignment and Masses at Leading
Order
22
? pseudoscalar mesons
23
? masses at leading order (Nf 3 ???)
24
3.7. pp???????????
25
? ?????????
26
pp????
27
3.8. Lagrangian (next order)
28
(No Transcript)
29
(No Transcript)
30
(No Transcript)
31
(No Transcript)
32
0
33
(No Transcript)
34
(No Transcript)
35
(No Transcript)
36
(No Transcript)
37
(No Transcript)
38
3.9. Background Field Method in pure Yang-Mills
Theory
39
? SU(N)?????????YM Lagrangian
???

? background field ? quantum field ???
background field
quantum field
40
???
41
? Gauge fixing term (Feynman gauge)

? Fadeev-Popov ghost term

GF FP terms ? SU(N)???? keep ? ?????????GF
FP ??????????
42
? Lagrangian
tree contribution
quantum correction at one loop
equations of motion for background fields
43
?????
tree contribution
equations of motion for background fields
quantum correction at one loop
44
? Feynman rules
45
(No Transcript)
46
2???????????log ??????
? ????
? ????????
asymptotic free
47
3.10. Background Field Method
ChPT ?? loop ????????
48
? Background fields ??? (1)
49
? Background fields ??? (2)
quantum field
background fields
50
? Background fields including external gauge
fields
51
? ???????
?1???2???2?????????? ? ??????????F?Fp???
?
52
generator Ta ??????????????????
?
53
? Feynman Rules
propagator
vertices ??
54
3.11. Pion Decay Constant ????
55
? tree contribution
56
? 1-loop correction
?????? dimensional regularization
log??
2???
57
? ????
? Pion decay constant
chiral ??(Mp0)?? decay constant
chiral???????
58
3.12. Pion Decay Constant ????
59
(gmn part ??)
? tree contribution
60
? 1-loop correction
? ????
? Decay constants

61
? QCD??????????????????????
QCD(?????????)???? ?????????????
62
3.13. Renormalizat ion of Low Energy Constants
63
? Renormalization in the dimensional
regularization
64
3.14. Vector Form Factors and L9
65
? Vector form factors
? Charge radii from ChPT
independent of L9
66
? predictions experiments
PDG (2006) 0.4520.011 0.3140.035 -
0.0770.010
67
3.15. p? e ?? and L10
68
? p ? e ??
?
? Axial-vector form factor
69
3.16. Values of low energy constants
70
3.17. Chiral Anomaly and Wess-Zumino-Witten Term
71
? Chiral anomaly
SU(3)L SU(3)R infinitesimal transformation
Lagrangian is invariant (classical level).
? Axial part, aR -aL ß, is broken at quantum
level.
change of effective action
72
? Wess-Zumino-Witten Lagrangian
? Wess-Zumino anomaly equation for
effective Lagrangian of NG bosons
73
? Solution for Wess-Zumino anomaly equation
74
? p0 ? ??
photon field
charge matrix
75
3.18. U(1)A Anomaly and ?
76
? U(1)A Anomaly
change of effective action
77
? Effective Action with ?

? Anomaly
? ? ???
Write a Comment
User Comments (0)
About PowerShow.com