Makalah (Code KKR 09) - PowerPoint PPT Presentation

1 / 33
About This Presentation
Title:

Makalah (Code KKR 09)

Description:

Title: Slide 1 Author: ibm Last modified by: setiadi Created Date: 10/19/2005 3:32:26 AM Document presentation format: On-screen Show Other titles – PowerPoint PPT presentation

Number of Views:151
Avg rating:3.0/5.0
Slides: 34
Provided by: IBM
Category:

less

Transcript and Presenter's Notes

Title: Makalah (Code KKR 09)


1
Makalah (Code KKR 09) Time on Stream Stability
of H-ZSM-5 Catalyst on Acetone Conversion to
Aromatic Chemicals Disampaikan dalam Forum
Seminar Nasional Teknik Kimia Palembang, 19 Juli
2006 Oleh Setiadi setiadi_at_che.ui.edu or
hasbila_at_eng.ui.ac.id SMS. 08159088431 Departme
nt Of Chemical Engineering Faculty Of Engineering
- University Of Indonesia

2
Introduction
Proses Katalitik
Hidrokarbon C1- C10
Aseton
ZSM-5
Aseton senyawa organic polar yang dapat
diproduksi dari materi hayati renewable mll.
fermentasi, pirolisis , maupun new process via
supercritical decomposition
C1 CH4 C2 C2H4, C2H6 C3 C3H6, C3H8 C4
C4H8, C4H10 C5 C5H10, C6 C6H6, C6
alifatik C7 Toulena, Alifatik, C8 Xylena,
alifatik C9 Mesitylene (1,3,5 TMB) C10
Durene, Naphthalene
Kemampuan shape-selectivity ZSM-5 terletak pada
bangunan struktur kristalnya yang diameter/bukaan
pori sekitar 0,56 nm dan hampir homogen. Katalis
ZSM-5 banyak digunakan untuk transformasi
reaksi-reaksi hidrokarbon dibanding dgn. ZSM-5
digunakan reaksi senyawa organik polar
3
Non-Renewable Route
Introduction
Geological Time Frame Process (Millions years)
Biomass derived liquid
Fossil Resources Crude Oils (C1-C40)
Hydrocarbons
Renewable Route (The Yellow Arrows)
Transformation Utilization
Biological time frame
Fuel LPG (C3-C4 H.Cs), Gasoline(C5-C10 H.Cs),
Diesel Fuel, Kerosene, Avian Jet Fuel, etc
Biomass Materials
Fuel Combustion Waste
biological activities
Fotosintesis
CO2
CO2
Un-converted CO2
H2O
The Concept Carbon Cycle Route for renewable
biomass and non-renewable as the origins of
hydrocarbons for fuels chemicals (developed
from Kojima, 1998 Metzger Eissen, 2004 dan
Padabed et al.,2002)
4
Introduction
5
Fundamental Review
A reaction mechanism for the acetone conversion
for C3-C4 or C5-C10 Aromatic hydrocarbons
formation
6
Fundamental Review
Tracking Acuan untuk Mekanisme Reaksi
Chang C.D dan A.J. Silvestri, 1977, The
conversion of Methanol and Other O-Compounds to
hydrocarbons over Zeolite Catalysts, Journal of
Catalysis, 47, 249-259 Chang, Clarence D., W. H.
Lang, and W.K. Bell, 1981, "Molecular
Shape-Selective Catalysis in Zeolite," in
Catalysis of Organic Reactions edited by William
R. Moser, Marcel Dekker Inc., 73-94 Xu, Teng,
Eric J. Munson, and James F. Haw, 1994, "Toward a
Systematic Chemistry of Organic Reactions in
Zeolites In Situ NMR Studies of Ketones," J. Am.
Chem. Soc., 116, 1962-1972 Hutchings, Graham J.,
Peter Johnston, Darren F. Lee, Ali Stair Warwick,
Craig D. Williams and Mark Wilkinson, 1994, "The
conversion of methanol and other O-compounds to
hydrocarbons over zeolite ß", Journal of
Catalysis 147, 177-185 Lucas, A., P. Canizares,
A. Duran, A. Carrero, 1997, "Dealumination of
HZSM-5 zeolites Effect of steaming on
acidity and aromatization activity," Appl. Catal.
154, 221 Stevens, Mark G., Denise Chen and Henry
C. Foley, 1999, "Oxidized Cesium/Nanoporous
Carbon Materials Solid-Base Catalysts with
Highly Dispersed Active Sites," J.C.S., Chemical
Commun., 275-276 Dehertog, W.J.H., G.F. Fromen,
1999, "A catalytic route for aromatics
production from LPG", Applied Catalysis A
General 189 63-75 Zaki, M.I., M. A. Hasan, F.A.
Al-Sagheer, and L. Pasupulety, 2000, "Surface
Chemistry of Acetone on Metal Oxides IR
Observation of Acetone Adsorption and Consequent
Surface Reactions on Silica-Alumina versus Silica
and Alumina," Langmuir, 16, 430-436 Xu, M., W.
Wang and Michael Hunger 2003, " Formation of
acetone enol on acidic zeolite ZSM-5 evidenced by
H/D exchange", Chem Commun, 722-723
7
Fundamental Review
  • Shift Selectivities Due to The Temp. Changes
  • Contoh
  • 2 (dua) Temp. 350 oC 400 oC untuk produk
  • Isobutene
  • Aromatics
  • Aliphatics
  • COx

Konversi Aseton Sensitivitas Pergeseran
Selektivitas Produk terhadap Suhu Reaksi (Sumber
Chang, Lang, Bell, 1981, Catalysis of
Organic Reactions by William R. Moser (Editor),
Marcel Dekker Inc., 73-94)
8
Fundamental Review
Basic unit building block-AlO4 or SiO4 tetrahedra
structure
Ten-membered oxygen ring structure
Secondary building block, Chains of 5-membered
oxygen rings
Secondary building block, Chains of 5-membered
oxygen rings
Straight channel, Elliptical openings 0.51 x 0.55
nm
Vertically-cross sectional view
Zig-zags channel, Circular openings 0.54 x 0.56
nm
The Framework of ZSM-5 structure
9
Fundamental Review
Acidic protons migrate between the four oxygen
atoms surrounding the tetrahedral aluminum center
in the following fashion (Ryder, dkk., J. Phys.
Chem. B 2000, 104, 6998)
(Source Sierka and Sauer, J. Phys. Chem. B
2001, 105, 1603-1613)
Ilustrasi difusi molekul senyawa Hidrokarbon
diseputar mulut pori zeolit
10
Fundamental Review
Pore Dimension for some Zeolites
Zeolite Pore size, nm
Y 0.72
Mordenite 0.67 x 0.7
Offreite 0.64
ZSM-5 0.54 x 0.56
Ferrierite 0.43 x 0.55
Erionite 0.52 x 0.36
11
  • Objectives
  • To observe the Performance of HZSM-5 on Time
    on stream Stability (TOS) on the Acetone
    Reaction to get the high as possible acetone
    conversion, Aromatic Yield and Product
    Selectivity
  • The influence of Si/Al ratio, Temperature during
    TOS Catalytic Tests

12
Experimental Set-up for Catalytic Test
Experimental Method
Wacetone??
Flow meter
Pump
Pre-heater
Acetone
Quartz sand
Electric furnace (1000W)
Mixture of ZSM-5 quartz sand
Stainless steel rod
N2 gas
Wproduk cair??
Gas product
Wproduk gas??
Ice - water bath
Skema Diagram Penyusunan Katalis dalam Reaktor
Pipa
13
Experimental Method
Experimental conditions
Catalyst H-ZSM-5
Origin Japan (Commercial)
Si/Al ratio 25 -100
Particle size (dp) 3 ?meter
Weight of catalyst for bed 1 gram
Quartz sand for blending 5 gram (10-15 mesh)
Quartz sand for preheating 7 gram (10-15 mesh)
Aceton (Cica) min 99.5 purity
Carrier Gas N2
14
Experimental Method
Data GC-FID ( Hewlett Packard ) for Analysis of
liquid product
Column DB-1 (100 DimethylPolysloxane), non-polar 60 m x 0.25 mm I.D., 0.25 µ (film) JW 122-1062-JW
Carrier Nitrogen
Oven 40 oC for 2 min 40 - 220 oC with heating rate at 2.5 o C/min
Injector Split 1100 260 oC
Detector FID 290 oC Nitrogen make up gas sebesar 30 ml/min
The condition of GC-TCD for gaseous product
Gas Chromatography GC 1 (organic) GC 2 (In-organic)
Column Porapaq Q Mol. Sieve
Carrier gas Helium Argon
Column Oven 80 oC 60 oC
Injection port 90 oC 80 oC
Detector (TCD) 90 oC 80 oC
15
Experimental Method
Waktu retensi hasil deteksi chromatogram GC-FID
kolom kapier DB-1 Posisi keberadaan Peak
dikonfirmasi dgn.GC-MS Larutan Standard murni/
campuran
Peak No. Compounds Retention time, minute Calibration factor
1 Acetone 6.25 2.2
2 C5-C6 Aliphatics 6.1-9.3 1
3 Benzene 7.98 1
4 Toluene (B.P. - 110.6 oC) 9.87 1
5 Ethylbenzene (B.P. 136.3oC) 11.85 1
6 mp-Xylene (B.P. 137-138 oC) 12.1 1
7 o-Xylene (B.P. - 144 oC) 12.6 1
8 C9-Aromatics group 13.8-15.6 1
9 C10-Aromatics 16.6-17.7 1
10 Naphthalene - 18.5 1
11 MMN group- 20.5-21.0 1
12 DMN 22,3 1
13 TMN 23.3-24 1
n-Propylbenzene, 1-Methyl-3-Ethylbenzene, 1-ethyl--Ethylbenzene, 1,3,5-Trimethylbenzene (Mesytylene), 1-Methyl-2-Ethylbenzene, 1,2,4-Trimethylbenzene, 1,2,3-Trimethylbenzene 1,4-Diethylbenzene, n-butylbenzene, 1,2 diethylbenzene, 1,2,4,5-Tetramethylbenzene, 1,2,3,4-Tetramethylbenzene n-Propylbenzene, 1-Methyl-3-Ethylbenzene, 1-ethyl--Ethylbenzene, 1,3,5-Trimethylbenzene (Mesytylene), 1-Methyl-2-Ethylbenzene, 1,2,4-Trimethylbenzene, 1,2,3-Trimethylbenzene 1,4-Diethylbenzene, n-butylbenzene, 1,2 diethylbenzene, 1,2,4,5-Tetramethylbenzene, 1,2,3,4-Tetramethylbenzene n-Propylbenzene, 1-Methyl-3-Ethylbenzene, 1-ethyl--Ethylbenzene, 1,3,5-Trimethylbenzene (Mesytylene), 1-Methyl-2-Ethylbenzene, 1,2,4-Trimethylbenzene, 1,2,3-Trimethylbenzene 1,4-Diethylbenzene, n-butylbenzene, 1,2 diethylbenzene, 1,2,4,5-Tetramethylbenzene, 1,2,3,4-Tetramethylbenzene n-Propylbenzene, 1-Methyl-3-Ethylbenzene, 1-ethyl--Ethylbenzene, 1,3,5-Trimethylbenzene (Mesytylene), 1-Methyl-2-Ethylbenzene, 1,2,4-Trimethylbenzene, 1,2,3-Trimethylbenzene 1,4-Diethylbenzene, n-butylbenzene, 1,2 diethylbenzene, 1,2,4,5-Tetramethylbenzene, 1,2,3,4-Tetramethylbenzene
16
Experimental Method
Waktu retensi produk gas menggunakan GC-TCD
Peak Component Retention time, min Retention time, min Calibration Factor
Peak Component Poropak - Q Mol.Sieve Calibration Factor
1 CO2 0.9 0.91659
2 C2H4 1.4 0.87553
3 C2H6 1.8 0.80699
4 C3H6 5.2 0.67475
5 C4 12.8 0.56479
6 H2 1.7 0.10501
7 CH4 4.1 0.34531
8 CO 4.7 1.00367
17
Experimental Method
Note Kandungan Hidro-karbon dalam sampel produk
cair juga telah dikonfir-masi dengan GC-Mass
Spectrosmeter
Tipikal GC-FID Chromatogram sampel produk cair
18
Experimental Method
Tipikal Chromatogram GC-TCD sampel produk gas
H2
C2H4
N2 Carrier gas
C2H6
CH4
C3H6
CO
C3H8
C4
Chromatogram resulted from GC using Molecular
Sieve Column
Chromatogram resulted from GC using Poropak Q
Column
19
Metode Penelitian
Perhitungan konv.aseton, Fraksi Liquid, Fraksi Gas
Aceton Feed 3cc during 34.5 min. Aceton Feed mg 3cc during 34.5 min. Aceton Feed mg 3cc during 34.5 min. Aceton Feed mg 3cc during 34.5 min. Aceton Feed mg 3cc during 34.5 min. Aceton Feed mg 3cc during 34.5 min. Aceton Feed mg 2329.50 2329.50
Trap-1 1601 mg wt (FID) Correction wt(recalc) mg Product in Trap1 Product in Trap1 1641.41 1641.41
Acetone 0.373 0.8206 0.817 13.08 mg
C5C6 2.64 2.64 2.628 42.08
C6-Aliphatics 8.68 8.68 8.641 138.35
Benzene 3.85 3.85 3.833 61.37
Toluene 23.14 23.14 23.037 368.83
Ethylbenzene 3.82 3.82 3.803 60.89
mp-Xylene 24.12 24.12 24.013 384.45
o-Xylene 7.27 7.27 7.238 115.88
C9-Aromatics 19.24 19.24 19.155 306.67
C10-Aromatics 1.74 1.74 1.732 27.73
Naphthalene 1.33 1.33 1.324 21.20
2-Methylnaphthalene 1.21 1.21 1.205 19.29
1-Methylnaphthalene 0.17 0.17 0.169 2.71
Dimethylnaphthalene 1.92 1.92 1.911 30.60
Trimethylnaphthalene 0.495 0.495 0.493 7.89
Absorption Trap-2 9707 mgram Product in trap 2 mg 45.254 45.254
Component Area FID Factor w Component, mg Component, mg
Ethanol 5156933.0 1.51E-07 7.79E-01 99.53 9661.746
Acetone 13091.8 1.53E-07 2.00E-03 0.26 24.848
Benzene 11702.5 6.913E-08 8.09E-04 0.10 10.037
Toluen 12089.5 6.913E-08 8.36E-04 0.11 10.369
Gas Phase Products Product Gas mg Product Gas mg Product Gas mg Product Gas mg Product Gas mg Product Gas mg 642.84 642.84
N2 rate 30 ml/min for 34.5 min vol/mmol 23.794872 ml/mmol ml/mmol
Vol. N2 1035 ml Nitrogen 43.496767 mmol
Component area Factor amount mol mmol Mol. Weight mg
N2 1435406 1 1435406 73.94 43.50 28 1218
H2 196823 0.105096 20685 1.07 0.63 2 1
CO 17485 1.00367 17549 0.90 0.53 28 15
CO2 204423 0.916593 187373 9.65 5.68 44 250
CH4 37351 0.345307 12898 0.66 0.39 16 6
C2H4 43612 0.875529 38184 1.97 1.16 28 32
C2H6 8111 0.806991 6546 0.34 0.20 30 6
C3H6 61208 0.6747475 41300 2.13 1.25 42 53
C3H8 141126 0.652652 92106 4.74 2.79 44 123
C4 Aliphatics 158055 0.564794 89269 4.60 2.71 58 157
Total output mg Total output mg Total output mg Total output mg Total output mg Total output mg Total output mg 2329.50 2329.50
Acetone Conversion Acetone Conversion 98.37 Liq. Oil Product Yield Liq. Oil Product Yield 72.40 wt
Gas Product Yield 27.60 wt
Carbon ?
Carbon ?
C ?
20
Selectivities Yield
Experimental Method
Interval of sample 0.58 h
Acetone conversion 98.37

Product composition Product composition Product composition
weight in g weight carbon
CO 14.89 0.67 0.31
CO2 249.83 11.21 3.31
CH4 6.25 0.28 0.23
C2H4 32.40 1.45 1.59
C2H6 5.95 0.27 0.29
C3H6 52.56 2.36 2.58
C3H8 122.81 5.51 6.03
C4 Aliphatics 156.89 7.04 7.70
C5C6 Aliphatics 42.08 1.89 2.07
C6-Aliphatics 138.35 6.21 6.79
Benzene 61.37 2.75 3.01
Toluene 368.83 16.54 18.11
Ethylbenzene 60.89 2.73 2.99
mp-Xylene 384.45 17.24 18.87
o-Xylene 115.88 5.20 5.69
C9-Aromatics 306.67 13.75 15.05
C10-Aromatics 27.73 1.24 1.36
Naphthalene 21.20 0.95 1.04
2-Methylnaphthalene 19.29 0.87 0.95
1-Methylnaphthalene 2.71 0.12 0.13
DMN 30.60 1.37 1.50
TMN 7.89 0.35 0.39
2229.51 100.00 100.00
Selectivities by C
21
Results Discussions
Si/Al25, TOS 17 h stable at ca.100 Conv.
Si/Al25
Si/Al100
Si/Al75
Acetone conversion over HZSM-5 by various Si/Al
mol ratio. WHSV 4 h-1, N2 carrier 30 ml/min.
22
Results Discussions
TOS lt 17 h stable at ca.100 Conv.
T673 K
T723 K
T623 K
T573 K
The stability of H-ZSM-5 Si/Al 25 on various
reaction temperature
23
Results Discussions
TOS lt 13 h, Yield gt 60
T673 K
T723 K
T623 K
T573 K
Yield of monoaromatic duing time on stream on
various temperature
24
Results Discussions
Diaromatik
H-ZSM-5 ? High Shape Selective for Aromatic
Formations, Total Select. gt 60
Monoiaromatik
Alifatik
Product Selectivity within 100 min with H-ZSM-5
Si/Al25
COx
25
Results Discussions
Monoiaromatik
Monoiaromatik
Monoiaromatik
C4 Aliphatics
C4 Aliphatics
C4 Aliphatics
Fig. 6 The change of monoaromatic and C4
aliphatics selectivity during the progressing of
time on stream reaction
  • Note
  • The relative symmetry in the opposite direction
    between the increasing of C4 aliphatics and the
    decreasing of monoaromatic selectivity
  • The shift selectivity between the change of
    monoaromatic and C4 aliphatics selectivity during
    TOS

26
  • Conclusions
  • ZSM-5 with Si/Al 25 is the high active and
    stable than the Si/Al ratio, it indicates that
    the reaction of acetone reaction required a high
    acid density on the surface of catalyst.
  • The reaction on 673 K is a favorable temperature
    for acetone conversion toward aromatic products.
    The lower temperatures of reaction lead to rapid
    deactivation, and the higher temperatures tend to
    decline the yield/selectivity of aromatics
    products
  • The formation of aromatic compounds come from the
    C4 aliphatics and big possibilities that the
    loss of activity of catalyst and shift
    selectivity are caused by coking which covers
    the surface acid sites of ZSM-5

27
Terima kasih atas perhatiannya
28
Terima kasih kpd.Prof. T. Kojima, Staffs the
Excellent Students, Faculty Engineering, Seikei
University, Tokyo-Japan Prof. T. Tsutsui
Applied Chemistry Chem. Engineering, Kagoshima
University, Kyushu-Japan Prof. Takao Masuda,
Div. of Material Science and Eng., Graduate
School of Eng., Hokkaido University, Sapporo,
Japan
29
The surface area for fresh and used catalyst
Catalyst Catalyst Total area, m2/g Micropore area, m2/g
HZSM-5 Fresh 321.8 209.4
Used 225.4 159.9
HNZ (protonated Nat. Zeolite) Fresh 294.4 248.2
Used 235.3 155.8
15 wtB2O3-HNZ Fresh 115.4 58.3
Used 76.0 44.2
30
The powder of Fresh Catalyst, the white color
The change of color for the powder of used
Catalyst to be black or dark brown
31
Effect of Boron oxide loading into HNZ catalyst
on Product Reaction
Catalyst HNZ 5 wt B2O3-HNZ 15 wtB2O3-HNZ 25 wtB2O3-HNZ
Temperature oC 400 400 400
Conversion 98.9 98.4 95.8 20.3
Product distribution ( w) Product distribution ( w)
CO 0.31 0.63 0.65 0.36
CO2 2.93 3.66 5.45 4.85
CH4 0.21 0.27 0.30 0.10
C2H4 1.0 2.96 4.11 0.17
C2H6 0.31 0.24 0.10 0.00
C3H6 1.55 5.82 12.60 1.26
C3H8 6.90 4.02 1.84 0.00
C4 aliphatics 7.35 9.69 20.30 61.70
C3-C4 Hydrocarbons 15.80 19.53 34.74 62.96
Liquid Hydrocarbon 77.30 72.80 54.70 31.50
32
The comparation of the results due to the water
addition into acetone feed
Feed Acetone acetone H2O (50 wt add)
Temperature, oC 400 400
LHSV h-1 2.18 4.32
Conversion 98.9 99.1
Product (wt )
Benzene 5.64 4.24
Toluene 21.12 18.26
Ethylbenzene 1.44 1.79
mp-Xylene 15.38 16.01
o-Xylene 4.67 4.9
C9-Aromatics 7.22 9.36
Naphthalene 0.49 0.65
2-Methylnaphthalene 1.64 1
1-Methylnaphthalene 0.59 0.32
Dimethylnaphthalene 1.83 1.17
Trimethylnaphthalene 0.16 0.24
33
The change of acetone conversion along with
Paraffin/olefin ratio during reaction over ZSM-5
(Si/Al25) Reaction condition Temperature
673 K, P0.13 MPa, WHSV 4 g/g.h, N2 carrier 30
ml/min
Write a Comment
User Comments (0)
About PowerShow.com