Title: Eigenvalues
1Chapter 22
2Eigenvalue Problems
- Engineering Problems involving vibrations,
elasticity, oscillating systems, etc., - Determine the eigenvalues for n homogenous linear
equations in n unknowns
Non-homogeneous system
homogeneous system
3Mathematical Background
- For nontrivial solutions gt
- Characteristic polynomial det( ) fn( )
The root of fn( ) 0 are the solutions for the
eigenvalues
4Mass-Spring System
Equilibrium positions
5Mass-Spring System
- Homogeneous system
- Find the eigenvalues ? from det 0
6Polynomial Method
- m1 m2 40 kg, k 200 N/m
- Characteristic equation det 0
- Two eigenvalues ?? 3.873s?1 or 2.236 s ?1
- Period Tp 2?/? 1.62 s or 2.81 s
7Principal Modes of Vibration
Tp 1.62 s X1 ?X2
Tp 2.81 s X1 X2
8Buckling of Column
- Axially loaded column
- Buckling modes
- M bending moment
- E modulus of elasticity
- I moment of inertia
Curvature
9Buckling of Axially Loaded Column
- Eigenvalue problem
- Buckling loads
- Fundamental mode n 1
Euler formula
10Buckling Modes
11Polynomial Method
- ODE
- Finite-difference method
- Characteristic equation (2n)th-order polynomial
Which Scheme? Order of Errors?
12Polynomial Method
- One interior node (h L/2)
- Two interior nodes (h L/3)
13Polynomial Method
- Three interior nodes (h L/4)
14Power Method
- Power method for finding eigenvalues
- Start with an initial guess for x
- Calculate w Ax
- Largest value (magnitude) in w is the estimate of
eigenvalue - Get next x by rescaling w (to avoid the
computation of very large matrix An ) - Continue until converged
Power method also gives you eigenvectors
15Power Method
- Start with initial guess z x0
rescaling
?k is the dominant eigenvalue
16Power Method
- For large number of iterations, ? should converge
to the largest eigenvalue - The normalization make the right hand side
converges to ? , rather than ?n
17Example Power Method
Consider
Assume all eigenvalues are equally important,
since we dont know which one is dominant
Start with
eigenvalue eigenvector
18Example
Current estimate for largest eigenvalue is 21
Rescale w by eigenvalue to get new x
Check Convergence (Norm lt tol?)
Norm
19- Update the estimated eigenvector and repeat
- New estimate for largest eigenvalue is 19.381
Rescale w by eigenvalue to get new x
Norm
20Example
One more iteration
Norm
Convergence criterion -- Norm (or relative
error) lt tol
21Example Power Method
22Script file Power_eig.m
23 A2 8 10 8 3 4 10 4 7 A 2 8
10 8 3 4 10 4 7 z,m
Power_eig(A,100,0.001) it m z(1)
z(2) z(3) z(4) z(5) 1.0000 21.0000
0.9524 0.7143 1.0000 2.0000
19.3810 0.9091 0.7101 1.0000 3.0000
18.9312 0.9243 0.7080 1.0000 4.0000
19.0753 0.9181 0.7087 1.0000
5.0000 19.0155 0.9206 0.7084 1.0000
6.0000 19.0396 0.9196 0.7085 1.0000
7.0000 19.0299 0.9200 0.7085 1.0000
8.0000 19.0338 0.9198 0.7085
1.0000 9.0000 19.0322 0.9199 0.7085
1.0000 error 8.3175e-004 z z 0.9199
0.7085 1.0000 m m 19.0322
xeig(A) x -7.7013 0.6686 19.0327
MATLAB Example Power Method
eigenvector eigenvalue MATLAB function
24MATLABs Methods
- e eig(A)
- gives eigenvalues of A
- V, D eig(A)
- eigenvectors in V(,k)
- eigenvalues Dii (diagonal matrix D)
- V, D eig(A, B) (more general eigenvalue
problems) (Ax ?Bx) - AV BVD
25Inverse Power Method
- Power method give the largest eigenvalue
- Inverse Power method gives the smallest
- Eigenvalues of B A-1 are inverse of
eigenvalues of A (i.e., ? 1/?) - So one could use power method on w Bx to get
largest eigenvalue of B - smallest of A - Calculating B is wasteful - instead use
26Inverse Power Method
- Basic power method gives the dominant eigenvalue
- Inverse power method gives the smallest
eigenvalue
27Script file for Inverse Power Method Use
LU_factor and LU_solve
28 A2 8 10 8 3 4 10 4 7 A 2 8
10 8 3 4 10 4 7
max_it100 tol0.001 z,m
InvPower(A,max_it,tol) L 1.0000 0
0 4.0000 1.0000 0
5.0000 1.2414 1.0000 U 2.0000
8.0000 10.0000 0 -29.0000 -36.0000
0 0 1.6897 B 2 8
10 8 3 4 10 4 7 A
2 8 10 8 3 4 10 4
7 1.0000 12.7826 0.3000 1.0000 -0.5333 it
1 2.0000 0.7123 0.1205 1.0000
-0.8013 it 3.0000 0.6687 0.1167
1.0000 -0.8152 it 4.0000 0.6686
0.1163 1.0000 -0.8155 it 4
z z 0.1163 1.0000 -0.8155 m m
0.6686 xeig(A) x -7.7013 0.6686
19.0327
eigenvector eigenvalue MATLAB function
L U
B LU
Smallest eigenvalue
29CVEN 302-501Homework No. 15
- Finish the HW but do not hand in. I will post the
solution on the net.