Glycoprotein Microheterogeneity via N-Glycopeptide Identification - PowerPoint PPT Presentation

1 / 20
About This Presentation
Title:

Glycoprotein Microheterogeneity via N-Glycopeptide Identification

Description:

Count spectra matched to decoy peptide-glycan pairs. Rescale decoy counts to balance the number of motif and non-motif peptides. * Tuning the filters – PowerPoint PPT presentation

Number of Views:43
Avg rating:3.0/5.0

less

Transcript and Presenter's Notes

Title: Glycoprotein Microheterogeneity via N-Glycopeptide Identification


1
Glycoprotein Microheterogeneity via
N-Glycopeptide Identification
  • Kevin Brown Chandler, Petr Pompach,
  • Radoslav Goldman, Nathan Edwards
  • Georgetown University Medical Center

2
The challenge
  • Identify glycopeptides in large-scale tandem
    mass-spectrometry datasets
  • Many glycopeptide enriched fractions
  • Many tandem mass-spectra / fraction
  • Good, but not great, instrumentation
  • QStar Elite CID, good MS1/MS2 resolution
  • Strive for hypothesis-generating analysis
  • Site-specific glycopeptide characterization
  • Glycoform occupancy in differentiated samples

3
Observations
  • Oxonium ions (204, 366) help distinguish
    glycopeptides from peptides
  • but do little to identify the glycopeptide
  • Few peptide b/y-ions to identify peptides
  • but intact peptide fragments are common
  • If the peptide can be guessed, then
  • the glycan's mass can be determined

4
Observations
5
Glycopeptide Search Strategy
  • Glycan-Peptide to Spectrum Matches
  • Multi-Peptide, Multi-Glycan Mass (Single
    Peptide),
  • Single Glycan Mass, Single Glycan (Topology)

6
Compromises
  • Single protein / Simple protein mixture
  • Few peptides to distinguish
  • Single N-glycan per peptide
  • Subtraction from precursor
  • Digest may not resolve site
  • Need peptide/glycan fragments to distinguish
  • Isobaric peptide-glycan pairs are not resolved
  • Need peptide/glycan fragments to distinguish

7
Glycan Databases
  • Link putative glycan masses to N-linked glycan
    structures (and organism, etc. )
  • Human N-linked GlycomeDB
  • Cartoonist structure enumeration
  • CFG Mammalian Array (v5.0)
  • In-house database (Oxford notation)
  • Database(s) provide "biased" search space
  • Coverage vs. "Reasonableness"
  • Trade off Time, Specificity, Biology

8
Haptoglobin standard
  • N-glycosylation motif (NX/ST)
  • Site of GluC cleavage

Pompach et al. Journal of Proteome Research 11.3
(2012) 17281740.
9
Haptoglobin standard
  • 11 HILIC fractions enriched for glycopeptides
  • 11 x LC-MS/MS acquisitions ( 15k spectra)
  • 2887/3288 MS/MS spectra have oxonium ion(s)
  • 317 have "intact-peptide" fragment ions
  • 263 spectra matched to peptide-glycan pairs
  • 52 matched single-glycan
  • 8 matched multi-peptide
  • 27 distinct (mass) glycans on 11 peptides
  • Glycans identified on all 4 haptoglobin sites

10
Algorithms Infrastructure
  • Glycan databases indexed by composition, mass,
    N-linked, and motif/type
  • Formats IUPAC, Linear Code, GlycoCT_condensed
  • Implemented GlycomeDB, Cartoonist, CFG Array
  • Monosaccharide decomposition of glycan mass
  • Böcker et al. Efficient mass decomposition (2005)
  • ?2 Goodness-of-fit test for precursor cluster
  • Theoretical isotope cluster from composition.
  • ICScore based on ?2 -test p-value.

11
False Discovery Rate (FDR)
  • How confident can we be in these mass-matches?

12
False Discovery Rate (FDR)
  • How confident can we be in these mass-matches?
    FDR 3.9 10 / 263 spectra

13
False Discovery Rate (FDR)
  • How confident can we be in these mass-matches?
    FDR 3.9 10 / 263 spectra
  • Estimate the number of errors by searching with
    non-N-linked motif (decoy) peptides too.
  • Count spectra matched to decoy peptide-glycan
    pairs.
  • Rescale decoy counts to balance the number of
    motif and non-motif peptides.

14
Tuning the filters
  • Adjusting thresholds and parameters to
  • Increase specificity (lower FDR, fewer spectra),
    or
  • Increase sensitivity (more spectra, higher FDR)

15
Tuning the filters
  • Oxonium ions
  • Number intensity
  • Match tolerance
  • "Intact-peptide" fragments
  • Number intensity
  • Match tolerance
  • Glycan composition
  • ICScore
  • Constrain search space
  • Match tolerance
  • Glycan database
  • Constrain search space
  • Match tolerance
  • Precursor ion
  • Non-monoisotopic selection
  • Sodium adducts
  • Charge state
  • Peptide search space
  • Semi-specific peptides
  • Non-specific peptides
  • Peptide MW range
  • Variable modifications

16
Tuning the filters
17
Tuning the filters
18
GlycoPeptideSearch (GPS) 1.3
  • Freely available implementation
  • Windows, Linux
  • Reads open-format spectra (mzXML, MGF)
  • Pre-indexed Glycan databases
  • Human Mammalian GlycomeDB
  • Mammalian CFG Array (v5.0)
  • User-Named (Oxford notation)
  • In silico digest and N-linked motif
    identification
  • Automatic target/decoy analysis for FDR
  • http//edwardslab.bmcb.georgetown.edu/GPS

19
Where to from here?
  • Demonstrate utility on new instrument platforms,
    proteins, samples
  • Develop a scoring model for fragments
  • Re-implement Cartoonist demerits
  • Exploit relationships between
  • MS2 spectra, MSn spectra
  • Explore application to
  • O-glycopeptides, N-glycans, O-glycans

20
Acknowledgements
  • Edwards Lab (Georgetown)
  • Kevin Brown Chandler NSF (Poster 32)
  • Goldman Lab (Georgetown)
  • Radoslav Goldman (Poster 6)
  • Petr Pompach
  • Miloslav Sanda (Poster 23)
  • Marshal Bern (Xerox PARC)
  • Cartoonist, Peptoonist
  • Rene Ranzinger (CCRC)
  • GlycomeDB
Write a Comment
User Comments (0)
About PowerShow.com