Title: Multiscale Detection and Characterisation of CMEs
1Multiscale Detection and Characterisation of CMEs
- J. P. Byrne1, P. T. Gallagher1, C. A. Young2 and
- R. T. J. McAteer3
- 1 Astrophysics Research Group, School of Physics,
Trinity College Dublin, Dublin 2, Ireland. - 2 ADNET Systems Inc., NASA Goddard Space Flight
Center, Greenbelt, MD 20771, USA. - 3 Catholic University of America, NASA Goddard
Space Flight Center, Greenbelt, MD 20771, USA.
STEREO/Cor1 24-Jan-07
2Overview
- CME Models
- Image Processing Multiscale methods
- CME Morphology Kinematics
- Application to LASCO and STEREO/SECCHI
LASCO/C3 27-Feb-00
3CME Models
- Forbes Priest, 1990
- Chen Krall, 2003
- Antiochos et al. 1999
- Lynch et al. 2004
4Image Pre-Processing
- Normalisation
- - exposure time
- - CCD bias
- - data dropouts
- Background subtraction
- Median filtering
- (de-noising)
LASCO/C2 18-Apr-00
5Finding the CME Front
6Our Algorithm
Image Pre-Processing
1) Multiscale Decomposition
Vector-Arrow Field
2) Gradient Space Information
3) Spatio-Temporal Filter
4) Non-Maxima Suppression
5) CME Front Characterisation
Kinematics Morphology
7Our Algorithm
Image Pre-Processing
1) Multiscale Decomposition
CME Vector Flow Field
2) Spatio-Temporal Filter
3) Non-Maxima Suppression
4) CME Front Characterisation
Kinematics Morphology
81) Multiscale Decomposition
- Wavelets
- Scaling / dilation factor (a)
- Shifting / translation factor (b)
- Suppress noise
91) Multiscale Decomposition
Input f
Low pass Approximation
High pass Detail
LASCO/C2 24-Jan-07
101) Multiscale Decomposition
Horizontal Direction
Scale 1
Scale 3
Scale 5
Vertical Direction
Scale 1
Scale 3
Scale 5
112) Gradient Space Information
Consider the Gradient of an image(which points
in the direction of most rapid change)
The gradient specifies
1) Magnitude
2) Direction
We have the Detail at a scale (N1) resulting
from the directional Derivative-of-Gaussian
convolved with the Approximation at scale (N)
So too can the Magnitude and Direction be taken
from the multiscale decomposition as illustrated
122) Gradient Space Information
Original
Magnitude
Angle
(McAteer et al. 2007)
132) Gradient Space Information
Vectors with magnitude and inclination angle
14Our Algorithm
Image Pre-Processing
1) Multiscale Decomposition
CME Vector Flow Field
2) Spatio-Temporal Filter
3) Non-Maxima Suppression
4) CME Front Characterisation
Kinematics Morphology
152) Spatio-Temporal Analysis
Degrees of Freedom Scale, Magnitude Angle
in Space Time
16Our Algorithm
Image Pre-Processing
1) Multiscale Decomposition
CME Vector Flow Field
2) Spatio-Temporal Filter
3) Non-Maxima Suppression
4) CME Front Characterisation
Kinematics Morphology
173) Non-Maxima Suppression
- Nearest-neighbour info.
- Criteria of angle and magnitude from gradients.
- Pixels chained along edges.
(Image by C.A.Young)
18Our Algorithm
Image Pre-Processing
1) Multiscale Decomposition
CME Vector Flow Field
2) Spatio-Temporal Filter
3) Non-Maxima Suppression
4) CME Front Characterisation
Kinematics Morphology
194) CME Front Characterisation
- Ellipse fit
- Height, Width, Curvature, Orientation
STEREO/Cor1 24-Jan-07
(H.E. Schrank, 1961)
20SOHO/LASCO CMEs
C2 C3 18-Jan-00
21SOHO/LASCO CMEs
C2 C3 19-Apr-00
22SOHO/LASCO CMEs
C2 C3 23-Apr-01
23STEREO/Cor1 CMEs
SECCHI-A 9-Feb-07
24STEREO/Cor1 CMEs
SECCHI-A 24-Jan-07
25STEREO/Cor1 CMEs
SECCHI-B SECCHI-A 24-Jan-07
26STEREO/Cor1 CMEs
SECCHI-A 24-Jan-07
27CME Kinematics
LASCO/C2 24-Jan-07
28Next Steps
- More data distribution of CME kinematics.
- Multiple view points (STEREO) triangulation /
projection effects. - Automated front detection space weather
forecasting.
STEREO illustration
29Thank You
Acknowledgments
- NRL
- Angelos Vourlidas, Simon Plunkett.
- This work is supported by grants from Science
Foundation Ireland NASAs Living with a Star
Program.
jbyrne6_at_gmail.com
30SOHO/LASCO CMEs
C2 C3 23-Apr-01
312) Spatio-Temporal Analysis
Degrees of Freedom Scale, Magnitude Angle
in Space Time
32Vector Flow Field
Vectors with magnitude and inclination angle
33Normalizing Radial Graded Filter
remove
- Radially the coronagraph image intensity drops
off steeply. - The intensity is normalized by subtracting the
mean and dividing by the standard deviation.
(Huw et al. 2006)
34Scale Chaining / Masks
remove
Degrees of Freedom Scale, Magnitude Angle
in Space Time gt Spatio-Temporal Image
Processing Thresholding
35Method FlowChart
Image preprocessing
Multiscale decomposition
scale chaining (denoising masks)
Gradient space
vector field (angle magnitude)
Spatio-temporal filter (noisy masks)
NRGF radial filter
Combine scale chain spatiotemp gt filter masks
Non-maxima suppression
Ellipse characterization
36Movie Scripts
Remove
- http//www.maths.tcd.ie/jaydog/Solar/canny_atrous
/automation/20000118_arrows_combined_rebin.html - http//www.maths.tcd.ie/jaydog/Solar/canny_atrous
/automation/20000418_arrows_combined_rebin.html - http//www.maths.tcd.ie/jaydog/Solar/canny_atrous
/automation/20040401_arrows_combined_rebin.html - http//www.maths.tcd.ie/jaydog/Solar/CME_ellipse_
movies/24jan07/C2_movie_ell.html - http//www.maths.tcd.ie/jaydog/Solar/CME_ellipse_
movies/24jan07/C3_movie_ell.html - www.maths.tcd.ie/jaydog/Solar/STEREO/pb/24jan07/G
raphs_plots.html