Digital Logic - PowerPoint PPT Presentation

About This Presentation
Title:

Digital Logic

Description:

digital logic electricity, gates, components optimization: karnaugh maps (k-maps) an optimization technique traffic light: design step 1: provide truth table in0 in1 ... – PowerPoint PPT presentation

Number of Views:54
Avg rating:3.0/5.0
Slides: 42
Provided by: lincke
Learn more at: https://www.cs.uwp.edu
Category:
Tags: digital | logic

less

Transcript and Presenter's Notes

Title: Digital Logic


1
Digital Logic
  • Electricity, Gates, Components

2
Digital Logic Reading Appendix
c through C.3
  • The Student shall be able to
  • Define voltage, current, resistance, volts, amps,
    ohms.
  • Recite ohms law
  • Draw the symbol for AND, OR, XOR, NAND, NOR, NOT.
  • Write mathematical statements using AND, OR, XOR,
    NOT.
  • Prepare a truth table.
  • Prepare a truth table for AND, OR, XOR, NOT.
  • Design a circuit using Sum of Products.
  • Design an efficient solution using a Karnaugh Map
    or K-Map.
  • Define decoder, multiplexor, parity, adder, and
    recognize their circuit diagrams.
  • Design a circuit with Logic Circuit

3
Electricity
Voltage Depth Current Speed Resistance Work
or Obstructions
voltage
current
resistance
4
Resistance measured in Ohms ?
5
Electricity Notation
  • Voltage gt Volts V
  • Current gt Amperes Amps A
  • Resistance gt Ohms ?

6
Ohms Law VIR
  • Voltage Current Resistance (VIR)
  • Resistance Voltage/Current (RV/I)
  • Example
  • Given
  • Voltage 10 V
  • Resistance 1k ?
  • What is Current?
  • Current I V/R
  • 10/1000
  • 1/100 0.01 A
  • 10 mAmps

7
Electronic BreadboarD
8
A Digital Logic Chip
  • Notch Direction
  • VCC Power
  • GND Ground
  • 4 NAND Gates
  • DIP Package

9
OR, AND, NOT
 
10
 
11
AND Example 1 0 0
? Truth Table 0 1
0 0 0
1 0 1
12
OR Example 1 0 1
Truth Table 0 1
0 0 1
1 1 1
Clock Alternates 1 - 0
13
XORExample 1 XOR 0 1
XOR Truth Table 0 1
0 0 1
1 1 0
Clock Alternates 1 - 0
14
Additional Electronic Gates
15
LED Display
Top Bottom Left Top Right Top Left Bottom
Right Middle Bottom Period
16
Building Digital COmponents
  • Multiplexor
  • Adder
  • Decoder

17
Multiplexer - DemultiplexEr
Multiplexer
Demultiplexer
selector
18
Multiplexer Selects One Input
A
Out
B
How is the solution provided mathematically?
S
19
Multiplexer Selects One Input
A
Out
B
Out (A ? !S) (B ? S)
S
20
Half Adder
  • A, B Input bits
  • S Sum
  • S A XOR B
  • C Carry
  • C A B
  • Notice there is no Carry-in

21
Full Adder
Inputs Inputs Inputs Outputs Outputs
A B Cin Cout S
0 0 0 0 0
1 0 0 0 1
0 1 0 0 1
1 1 0 1 0
0 0 1 0 1
1 0 1 1 0
0 1 1 1 0
1 1 1 1 1
22
Full Adder
23
Encoder - Decoder
Encoder
Decoder
Output
Input
24
Decoder
Input Input Input Output Output Output Output Output Output Output Output
0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0
Decoder
25
Decoder Sums of Product Solution
Input Input Input Output Output Output Output Output Output Output Output
0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0
 
2 1 0 7 6 5
4 3 2 1 0
26
Designing A Circuit
  • Example Parity
  • Define the Truth Table
  • Write Sum of Products
  • Optimize
  • Develop circuit

27
Parity
  • Used in Data Communications, RAID disk systems
  • Even Parity Example Each Byte sums to even
    number of 1-bits
  • 0000000 -gt 0
  • 1111111 -gt 1
  • 0101010 -gt 1
  • 1000001-gt ?
  • Odd Parity Example Each 3 bits sums to odd
    number of 1-bits
  • 00-gt 1
  • 10 -gt 0
  • 11-gt ?
  • Enables ERROR CHECKING, Sometimes ERROR
    CORRECTION

28
Step 1 Provide Truth TableEven Parity Output
Assures even 1 digits
Input1 Input2 Input3 Output
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1
29
Step 2 Write Sum of Products
  •  

30
Step 3 optimize
  • Laws
  • Boolean Algebra
  • Commutative Law
  • AB BA
  • AB BA
  • Associative Law
  • A(BC)(AB)C
  • A(BC) (AB)C
  • Distributive Law
  • A(BC) AB AC
  •  

31
Step 4 Develop Circuit Logic Circuit
32
Traffic Light
  • Green 01
  • Yellow 10
  • Red 00
  • Succession
  • Green 01 -gt Yellow 10
  • Yellow 10 -gt Red 00
  • Red 00 -gt Green 01

33
Traffic Light Design
  • Step 2
  • Write Sum of Products
  • Step 1
  • Provide Truth Table
  •  

IN0 IN1 OUT0 OUT1
0 0 0 1
0 1 1 0
1 0 0 0
34
Optimization Karnaugh Maps (K-Maps)
  • An Optimization Technique

35
Traffic Light Design
  • Step 2
  • Develop K-Map
  • Step 1
  • Provide Truth Table

Out0
0 1
0 0
IN0 IN1 OUT0 OUT1
0 0 0 1
0 1 1 0
1 0 0 0
Out1
1 0
0 0
36
Comparison Truth Table vs. K-Map
  • Truth Table
  • Karnaugh Map
  •  
  • Left columns Input
  • Right columns Output

IN0 IN1 OUT0 OUT1
0 0 0 1
0 1 1 0
1 0 0 0
Out0
0 1
0 0
37
Solving a K-map with 4 inputs
  •  

CD
0 0 1 1
1 1 1 1
AB 1 1 1 1
0 1 0 0
38
Even Parity Output Assures even 1
digitsConvert to K-Map
Input1 Input2 Input3 Output
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

0 1
1 0
0 1
1 0
39
Even Parity Output Assures even 1
digitsAnalyze K-Map
  •  


0 1
1 0
0 1
1 0
40
Optimized Parity ImplementationOptimized 6
Gates Original 8 Gates
41
Conclusion
  • Definitions
  • Designing Logic
  • Electricity V I R
  • Symbols AND, OR, NOR, XOR, NAND, NOR
  • Equation Form
  • Gate Form
  • Components Multiplexer, Decoder, Parity, Adder
  • Define Truth Table
  • Analyze
  • Write Sum of Products
  • Use Karnaugh Map
  • Optimize in other ways
  • Develop Circuit
Write a Comment
User Comments (0)
About PowerShow.com