Compressing Hexahedral Volume Meshes - PowerPoint PPT Presentation

About This Presentation
Title:

Compressing Hexahedral Volume Meshes

Description:

Title: No Slide Title Author: Martin Isenburg Last modified by: isenburg Created Date: 10/14/1999 3:03:23 AM Document presentation format: Letter Paper (8.5x11 in) – PowerPoint PPT presentation

Number of Views:85
Avg rating:3.0/5.0
Slides: 97
Provided by: MartinI4
Learn more at: http://www.cs.unc.edu
Category:

less

Transcript and Presenter's Notes

Title: Compressing Hexahedral Volume Meshes


1
CompressingHexahedral Volume Meshes
  • Martin Isenburg
  • UNCChapel Hill

Pierre Alliez INRIASophia-Antipolis
2
Overview
  • Volume Meshes
  • Related Work
  • Compressing Connectivity
  • Coding with Edge Degrees
  • Boundary Propagation
  • Adaptive Traversal
  • Compressing Geometry
  • Parallelogram Prediction
  • Demo

3
Take this home
  • The connectivity of a hexahedral mesh can be
    coded through asequence of its edge degrees.
  • This encoding naturallyexploits the regularity
    commonlyfound in such data sets.

4
Volume Meshes
5
Volume Meshes
  • scientific industrial applications
  • thermodynamics
  • structural mechanics
  • visualization simulation
  • unstructured / irregular ( ? not on a
    grid )
  • tetrahedral, hexahedral, polyhedral

6
Hexahedral Volume Meshes
  • have numerical advantages in finite element
    computations
  • challenging to generate
  • their internal structure looks nice compared to
    tetrahedral meshes

7
Ingredients
  • geometry positions of vertices
  • connectivity which vertices form a hexahedron
  • properties attached to vertices density,
    pressure, heat, ...

8
Standard Representation
  • connectivity
  • geometry

hex1 1 3 6 4 7 8 9 2 hex2 4 5 8 2 9 1 6 7 hex3
7 5 hexh
less than84 KB
vtx1 ( x, y, z ) vtx2 ( x, y, z ) vtx3 ( x, y,
z ) vtxv
71572 hexahedra 78618 vertices
? size 3.23 MB
9
Related Work
10
Surface Mesh Compression
  • Geometry Compression, Deering, 95
  • Topological Surgery, Taubin Rossignac, 98
  • Cut-Border Machine, Gumhold Strasser, 98
  • Triangle Mesh Compression, Touma Gotsman, 98
  • Edgebreaker, Rossignac, 99
  • Spectral Compression of Geometry, Karni
    Gotsman, 00
  • Face Fixer, Isenburg Snoeyink, 00
  • Valence-driven Connectivity Coding, Alliez
    Desbrun, 01
  • Near-Optimal Coding, Khodakovsky, Alliez,
    Desbrun
  • Degree Duality Coder, Isenburg, 02
  • Polygonal Parallelogram Prediction, Isenburg
    Alliez, 02

Schröder, 02
11
Volume Mesh Compression
  • Grow Fold, Szymczak Rossignac, 99
  • Cut-Border Machine, Gumhold, Guthe Strasser,
    99
  • Rendering of compressed volume data, Yang et
    al., 01
  • Simplification
  • Simplification of tetrahedral meshes, Trotts et
    al., 98
  • Progressive Tetrahedralizations, Staadt Gross,
    98
  • Progressive Compression
  • Implant Sprays, Pajarola, Rossignac Szymczak,
    99

!! only for tetrahedral meshes !!
12
Surface / Volume Connectivity
  • a mesh with v vertices has maximal
  • surfaces
  • 2v-2 triangles ? 6v indices
  • v-1 quadrilaterals ? 4v indices

volumes O(v2) tetrahedra ? 12v
indices O(v2) hexahedra ? 8v indices
? connectivity dominates geometry even more
for volume meshes
13
Degree Coding for Connectivity
  • Triangle Mesh Compression, Touma Gotsman, 98
  • Valence-driven Connectivity Coding, Alliez,
    Desbrun, 01
  • Degree Duality Coder, Isenburg, 02
  • Near-Optimal Connectivity Coding, Khodakovsky,
    Alliez, Desbrun, Schröder, 02

compressed with arithmetic coder ?
converges to entropy
14
Entropy
  • for a symbol sequence of t types

t
1
?
Entropy pi log2( ) bits
pi
i 1
of type t
pi
total
15
Average Distribution
over a set of 11 polygonal meshes
16
Worst-case Distribution
3
4
5
Alliez Desbrun, 01 ? 3.241 bpv Tutte, 62
6
7
8
9



vertex degrees
17
Adaptation to Regularity
18
Degree Coding for Volumes ?
tri ? tet
vertex degrees ? edge degrees
19
Regular Volume Meshes?
  • elements for regular 2D tiling
  • regular triangle
  • regular quadrilateral
  • regular hexagon

20
Compressing Connectivity
21
Space Growing
  • similar in spirit to region growing
  • algorithm maintains hull enclosing processed
    hexahedra

?
  1. initialize hull with a border face
  2. iterate until done

22
Coding with Edge Degrees
23
Coding with Edge Degrees
focus face
24
Coding with Edge Degrees
slots
focus face
25
Coding with Edge Degrees
26
Coding with Edge Degrees
27
Coding with Edge Degrees
28
Coding with Edge Degrees
29
Coding with Edge Degrees
30
Coding with Edge Degrees
31
Coding with Edge Degrees
32
Coding with Edge Degrees
33
Coding with Edge Degrees
34
Coding with Edge Degrees
35
Coding with Edge Degrees
36
Coding with Edge Degrees
37
Coding with Edge Degrees
38
Coding with Edge Degrees
39
Coding with Edge Degrees
40
Coding with Edge Degrees
41
Coding with Edge Degrees
42
Coding with Edge Degrees
43
Coding with Edge Degrees
44
Coding with Edge Degrees
45
Coding with Edge Degrees
46
Coding with Edge Degrees
47
Resulting Symbols
  • border edge degrees
  • interior edge degrees

. . .
. . .
. . .
. . .
48
Average Distributions
no
no
4
3
2
3
4
5
5
6
6
7
2
yes
yes
border degrees
interior degrees
border?
join?
49
Possible Configurations
50
Possible Configurations
51
Configuration hut
hut
52
Configuration step
step
0
53
Configuration bridge
bridge
0
0
54
hut or roof
roof ? join operation
?
55
other join operations
  • free vertex already on hull
  • free edge already on hull

hut
step
56
Adaptive traversalto avoid joinoperations
57
Reason for join operations
hull
58
Reason for join operations
hull
59
Reason for join operations
hull
60
Reason for join operations
hull
61
Reason for join operations
unprocessed region
hull
processed region
62
Reason for join operations
unprocessed region
hull
processed region
63
Reason for join operations
unprocessed region
hull
processed region
64
Reason for join operations
unprocessed region
hull
processed region
65
Reason for join operations
unprocessed region
hull
processed region
66
Adaptive Traversal
  • Valence-driven connectivity encoding for 3D
    meshes Alliez Desbrun, 01

? avoid creation of cavities


















67
Propagating theborder information
68
Explaining Example
69
Explaining Example
70
Explaining Example
71
Explaining Example
72
Results (Connectivity)
bits per hexahedron (bph)
model
ratio
raw
compressed
hanger ra bump warped hutch c
1
5.3 2.9 2.1 0.2 0.3 0.6
72.0 80.0 88.0 112.0 112.0
136.0
1 14 1 28 1 42 ... 1 621 1
361 1 226
average compression ratio 1 163
73
Results (Connectivity)
bits per hexahedron (bph)
model
ratio
raw
compressed
hanger ra bump warped hutch c
1
5.3 2.9 2.1 0.2 0.3 0.6
72.0 80.0 88.0 112.0 112.0
136.0
1 14 1 28 1 42 ... 1 621 1
361 1 226
average compression ratio 1 163
74
Compressing Geometry
75
Predictive Compression
  1. quantize positions with b bits

76
Predictive Compression
  1. quantize positions with b bits
  2. traverse positions

77
Predictive Compression
  1. quantize positions with b bits
  2. traverse positions
  3. predict position from neighbors

prediction
(1004, 71, 723)
78
Predictive Compression
  1. quantize positions with b bits
  2. traverse positions
  3. predict position from neighbors
  4. store corrective vector

corrector
prediction
(4, -3, -5)
(1004, 71, 723)
79
Parallelogram Rule
Triangle Mesh Compression, Touma Gotsman, 98




across non-convex triangles
across non-planar triangles
80
Position Predictions
init
vertex prediction rule
v0 0 v1 v0 v2 v1 v3 v0 - v1 v2 v4
2v0 v8 (or v0 ) v5 v1 v0 v4 v6
v2 v1 v5 v7 v3 v2 v6
1
2
3
0
hut
81
Results (Geometry)
bits per vertex (bpv)
model
ratio
raw
compressed
hanger ra bump warped hutch c
1
23.2 30.8 24.4 10.5 19.9 5.9
48.0 48.0 48.0 48.0 48.0 48.0

1 2.1 1 1.6 1 2.0 ... 1
4.6 1 2.4 1 8.1
average compression ratio 1 3.7
82
Demo
83
Summary
  • degree coding for volume mesh connectivity
  • edge degrees
  • boundary propagation
  • adaptive traversal
  • parallelogram prediction for volume mesh geometry
  • within predictions

84
Current / Future Work
  • Mixed Volume Meshes
  • hex tet prism pyramid cells
  • Universal Connectivity Coder
  • face, vertex, and edge degrees
  • tri / quad / poly surfaces
  • tet / hex / poly volumes
  • surface mesh cell of volume mesh
  • bit-rate like specialized coder

85
Acknowledgements
  • data sets
  • Alla Sheffer
  • Steven Owen
  • Scott Mitchell
  • Claudio Silva
  • financial support
  • ARC TéléGéo grant from INRIA

86
  • Thank You!

87
Old Beijing Duck
  • Whoever had expressed interest in going to eat
    duck in the ancient-style hutong area
  • meet me 10-15 minutes after
  • end of PG in front of hotel
  • bring
  • map
  • address card of your hotel
  • 100 yuan (smaller bills for subway / bus)

88
(No Transcript)
89
(No Transcript)
90
(No Transcript)
91
Configurations roof
roof
zero-slots 0 adjacent faces 1 free
faces 4free edges 4free vertices --
92
Configurations tunnel
tunnel
0
0
0
0
zero-slots 2 adjacent faces 4 free
faces 2free edges --free vertices --
93
Configuration corner
corner
0
0
0
zero-slots 2 adjacent faces 3 free
faces 3free edges 3free vertices 1
94
Configuration gap
gap
0
0
0
0
0
zero-slots 3 adjacent faces 4 free
faces 2free edges 1free vertices --
95
Configurations pit
pit
0
0
0
0
0
0
0
0
zero-slots 4 adjacent faces 5 free
faces 1free edges --free vertices --
96
Configurations den
den
0
0
0
0
0
0
zero-slots 4 adjacent faces 6 free
faces --free edges --free vertices --
Write a Comment
User Comments (0)
About PowerShow.com