IOE/MFG 543 - PowerPoint PPT Presentation

1 / 28
About This Presentation
Title:

IOE/MFG 543

Description:

IOE/MFG 543 Chapter 14: General purpose procedures for scheduling in practice Section 14.4: Local search (Simulated annealing and tabu search) Introduction ... – PowerPoint PPT presentation

Number of Views:43
Avg rating:3.0/5.0
Slides: 29
Provided by: ioe
Category:
Tags: ioe | mfg | step

less

Transcript and Presenter's Notes

Title: IOE/MFG 543


1
IOE/MFG 543
  • Chapter 14 General purpose procedures for
    scheduling in practice
  • Section 14.4 Local search (Simulated annealing
    and tabu search)

2
Introduction
  • Constructive vs. improvement type algorithms
  • Constructive type
  • Construct the schedule by, e.g., adding one job
    at the time
  • Improvement type
  • Start with some complete schedule
  • Try to obtain a better schedule by manipulating
    the current schedule

3
General local search algorithm
  • G(S) is the value of the objective under schedule
    S
  • Let k1. Start with a schedule S1 and let the
    best schedule S0S1
  • Choose a schedule Sc from the neighborhood of Sk
    N(Sk)
  • If Sc is accepted let Sk1 Sc, otherwise let
    Sk1 Sk. If G(Sk1)ltG(S0) let S0Sk1
  • Let kk1. Terminate the search if the stopping
    criteria are satisfied. Otherwise return to 2.

4
Local search example1SwjTj
Jobs 1 2 3 4
wj 4 5 3 5
pj 12 8 15 9
dj 16 26 25 27
5
Local search example (2)Schedule representation
  • Let the vector S(j1,,jn) represent the schedule
  • jkj if j is the kth job in the sequence
  • Use EDD to construct the initial schedule
  • S1
  • The total weighted tardiness
  • Let G(S) be SwjTj under schedule S
  • gt G(S1)

6
Local search example (3)Neighborhood structure
  • Manipulating S1
  • Pairwise adjacent interchange
  • Try to move a job to a different location in the
    sequence
  • Rules 1 and 2 above define two types of
    neighborhoods N1 and N2
  • N1(S1)
  • N2(S1)

7
Local search example (4)Choosing Sc
  • Assume we use N1
  • Methods for choosing Sc from N1(Sk)
  • Randomly
  • Move the job forward that has the highest
    contribution to the objective
  • Follow rule 2
  • Interchange jobs and
  • Sc ( , , , )
  • G(Sc)

8
Local search example (5)Acceptance criteria
  • Is G(Sc) lt G(Sk)?
  • Should we consider accepting Sc if G(Sc) G(Sk)
    ?
  • In this example we only accept if we get an
    improvement in the objective

9
Local search example (6)Stopping criteria
  • Max number of iterations
  • No or little improvement
  • We would terminate the search since we did not
    improve the current schedule
  • Local optimal solution
  • No solution S in N(Sk) satisfies G(S)ltG(Sk)

10
Local search example (7)Continuing
  • S2S1(1,3,2,4)
  • Swap 3 and 2 gt G(1,2,3,4) 115
  • S3(1,2,3,4)
  • Swap 4 and 3 gt G(1,2,4,3) 67
  • S4(1,2,4,3)
  • Swap 4 and 2 gt G(1,4,2,3) 72
  • S5S4
  • Swap 2 and 1 gt G(2,1,4,3) 83
  • STOP and return (1,2,4,3) as the solution

11
Local search example (8) Total enumeration
j1 j2 j3 j4 SwjTj
1 2 4 3 67
1 4 2 3 72
2 1 4 3 83
4 1 2 3 92
2 4 1 3 109
4 2 1 3 109
1 2 3 4 115
1 4 3 2 123
2 1 3 4 131
4 2 3 1 131
2 4 3 1 133
1 3 2 4 136
j1 j2 j3 j4 SwjTj
2 3 4 1 137
3 2 4 1 137
1 3 4 2 141
3 4 2 1 142
4 3 2 1 142
4 1 3 2 143
2 3 1 4 161
3 2 1 4 161
3 4 1 2 170
4 3 1 2 170
3 1 2 4 174
3 1 4 2 179
12
Local searchDesign criteria
  1. The representation of the schedule
  2. The design of the neighborhood
  3. The search process within the neighborhood
  4. The acceptance-rejection criteria
  5. Stopping criteria

13
Simulated Annealing (SA)
  • Annealing Heating of a material (metal) to a
    high temperature and then cooling it at a certain
    rate to achieve a desired crystalline structure
  • SA Avoids getting stuck at a local minimum by
    accepting a worse schedule Sc with probability

P(Sk,Sc) exp(- G(Sc)-G(Sk) )
P(Sk,Sc) exp(- bk )
14
SA Temperature parameter
  • bk 0 is the temperature (also called cooling
    parameter)
  • Initially the temperature is high making moves to
    a worse schedule more likely
  • 50 chance of accepting a slightly worse
    schedule seems to work well
  • As the temperature decreases the probability of
    accepting a worse schedule decreases
  • Often, bkTak for some .9ltalt1 and Tgt0

15
SA algorithm
  • Set k1 and select b1.Select S1 and set S0S1.
  • Select Sc (randomly) from N(Sk).
  • If G(S0)ltG(Sc)ltG(Sk) set Sk1Sc and go to 3
  • If G(Sc)ltG(S0) set S0Sk1Sc and go to 3
  • If G(Sc)gtG(Sk), generate a uniform random number
    Uk from a Uniform(0,1) distribution (e.g., rand()
    in Excel)
  • If UkP(Sk,Sc), set Sk1Sc otherwise set
    Sk1Sk.
  • Select bk1 bk.Set kk1.Stop if stopping
    criteria are satisfied otherwise go to 2.

16
SA example1SwjTj
Jobs 1 2 3 4
wj 4 5 3 5
pj 12 8 15 9
dj 16 26 25 27
17
SA exampleIteration 1
  • Step 1 S0S1(1,3,2,4). G(S1)136. Let T10 and
    a.9 gt b19
  • Step 2. Select randomly which jobs to swap,
    suppose a Uniform(0,1) random number is V1 .24
    gt swap first two jobs
  • Sc(3,1,2,4), G(Sc)174, P(Sk,Sc)1.5
  • U1.91 gt Reject Sc
  • Step 3 Let k2

18
SA exampleIteration 2
  • Step 2. Select randomly which jobs to swap,
    suppose a Uniform(0,1) random number is V2 .46
    gt swap 2nd and 3rd jobs
  • Sc(1,2,3,4), G(Sc)115
  • gt S3S0Sc
  • Step 3 Let k3

19
SA exampleIteration 3
  • Step 2. V3 .88 gt swap jobs in 3rd and 4th
    position
  • Sc(1,2,4,3), G(Sc)67
  • gt S4S0Sc
  • Step 3 Let k4

20
SA exampleIterations 4 and 5
  • Step 2 V4 .49 gt swap jobs in 2nd and 3rd
    position
  • Sc(1,4,2,3), G(Sc)72, b410(.9)46.6
  • P(Sk,Sc)47, U4.90 gt S5S4
  • Step 3 Let k5
  • Step 2 V5 .11 gt swap 1st and 2nd jobs
  • Sc(2,1,4,3), G(Sc)83, b510(.9)55.9
  • P(Sk,Sc)7, U5.61 gt S6S5
  • Step 3 Let k6
  • Are you bored yet?

21
Tabu (taboo?) search
  • Tabu search tries to model human memory processes
  • A tabu-list is maintained throughout the search
  • Moves according to the items on the list are
    forbidden

22
Tabu search algorithm
  • Set k1. Select S1 and set S0S1.
  • Select Sc from N(Sk).
  • If the move Sk?Sc is on the tabu list set Sk1Sk
    and go to 3
  • If Sk?Sc is not on the tabu list set Sk1Sc.Add
    the reverse move to the top of the tabu list and
    delete the entry on the bottom.If G(Sc)ltG(S0),
    set S0Sc.
  • Set kk1.Stop if stopping criteria are
    satisfied otherwise go to 2.

23
Tabu search example1SwjTj
Jobs 1 2 3 4
wj 4 5 3 5
pj 12 8 15 9
dj 16 26 25 27
  • Determine Sc by the best schedule in the
    neighborhood that is not tabu
  • Use tabu-list length 2
  • The tabu list is denoted by L

24
Tabu search exampleIteration 1
  • Step 1 S0S1(1,3,2,4). G(S1)136. Set L.
  • Step 2. N(S1) (3,1,2,4), (1,2,3,4), (1,3,4,2)
    with respective cost 174, 115, 141 gt
    ScS0S2(1,2,3,4). Set L(3,2), i.e.,
    swapping 3 and 2 is not allowed
  • Step 3 Let k2

25
Tabu search exampleIteration 2
  • Step 2.
  • N(S2) (2,1,3,4), (1,3,2,4), (1,2,4,3)
  • with respective costs 131, - , 67
  • gt ScS3(1,2,4,3)
  • Set S0Sc
  • Set L(3,4),(3,2)
  • Step 3 Let k3

26
Tabu search exampleIteration 3
  • Step 2
  • N(S3) (2,1,4,3), (1,4,2,3), (1,2,3,4)
  • with respective costs 83, 72, -
  • gt ScS4(1,4,2,3)
  • Set L(2,4),(3,4)
  • Step 3 Let k4

27
Tabu search exampleIteration 4
  • Step 2
  • N(S4) (4,1,2,3), (1,2,4,3), (1,4,3,2)
  • with respective costs 92, -, 123
  • gt ScS5(4,1,2,3)
  • Set L(1,4),(2,4)
  • Step 3 Let k5

28
Tabu search exampleIteration 5
  • Step 2
  • N(S5) (1,4,2,3), (4,2,1,3), (4,1,3,2)
  • with respective costs -, 109, 143
  • gt ScS6(4,2,1,3)
  • Set L(2,1),(4,1)
  • Step 3 Let k6
Write a Comment
User Comments (0)
About PowerShow.com