Title: SDSS
1SDSS
The Sloan Digital Sky Survey
2Mapping The Universe
3The SDSS is Two Surveys
The Fuzzy Blob Survey
The Squiggly Line Survey
4The Site
5- The telescope
- 2.5 m mirror
6Digital Cameras
7CCDs
8CCDs Drift Scan Mode
9The SDSS ATLAS of GALAXIES
10HUBBLE's TUNING FORK DIAGRAM
11NGC 450
12NGC 1055
13NGC 4437
14NGC 5792
15NGC 1032
16NGC 4753
17NGC 60
18NGC 5492
19NGC 936
20NGC 5750
21NGC 3521
22NGC 2967
23NGC 5719
24UGC 01962
25NGC 1087
26NGC 5334
27UGC 05205
28UGC 07332
29UGCA 285
30Arp 240
31UCG 08584
32NGC 799 NGC 800
33NGC 428
34UGC 10770
35Measuring Quantities From the Images The Photo
pipeline
36How do you measure brightness?
Most People use Magnitudes m 2.5 Log (flux) C
We use Luptitudes
37OK, but how do you measure flux?
Isophotal magnitudes What we dont do
38OK, but how do we measure flux?
Petrosian Radius Surface brightness Ratio 0.2
Petrosion flux Flux within 2 Petrosian Radii
39Some Other Measures
PSF magnitudes
Fiber magnitudes
40Galaxy Models
de Vaucouleurs magnitudes assume profile
associated with ellipiticals
II0 exp -7.67(r/re)1/4
Exponential magnitudes Assume profile associated
with spirals
II0 exp -1.68(r/re)
Model magnitudes pick best
41Which Magnitudes to Use?
Photometry of Distant QSOs PSF magnitudes
Colors of Stars PSF magnitudes
Photometry of Nearby Galaxies Petrosian magnitudes
Photometry of Distant Galaxies Petrosian magnitudes
42Other Image Parameters
- Size
- Type
- psfMag expMag gt 0.145
- Many hundreds of others
43SPECTRA
44An Astronomical Primer of Stellar Spectra
45Stellar Spectral Types
ong ime
46O
Stellar Spectra
47B
Stellar Spectra
48A
Stellar Spectra
49F
Stellar Spectra
50G
Stellar Spectra
51K
Stellar Spectra
52M
Stellar Spectra
53L
Stellar Spectra
54T
Stellar Spectra
55Cataclysmic Variables
Stellar Spectra
56White Dwarfs
Stellar Spectra
57Carbon Stars
Stellar Spectra
58Stellar Spectra
M star White Dwarf
59Galaxy Spectra
Galaxies Stargas
60Double Galaxy
61QSO spectra
Z0.1
62QSO spectra
Z1
63QSO spectra
Z2
64QSO spectra
Z3
65QSO spectra
Z4
66QSO spectra
Z5
67Mapping The Universe
68Finding Redshifts
69Types of Maps
- Main Galaxy Sample
- LRG sample
- Photo-z sample
- QSO sample
- QSO absorption systems
- Galactic Halo
- Ly-a systems
- Asteroids
- Space Junk
70EDR PhotoZ
- Tamás Budavári
- The Johns Hopkins University
István Csabai Eötvös University, Budapest Alex
Szalay The Johns Hopkins University Andy
Connolly University of Pittsburgh
71Pros and Cons
Template fitting
Empirical method
Comparing known spectra to photometry
Redshifts from calibrators with similar colors
no need for calibrators, physics in
templates more physical outcome, spectral type,
luminosity template spectra are not perfect,
e.g. CWW
quick processing time new calibrator set and
fit required for new data cannot extrapolate,
yields dubious results
72Empirical Methods
- Nearest neighbor
- Assign redshift of closest calibrator
- Polynomial fitting function
- Quadratic fit, systematic errors
- Kd-tree
- Quadratic fit in cells
?z 0.033
?z 0.027
?z 0.023
73Template Fitting
- Physical inversion
- More than just redshift
- Yield consistent spectral type, luminosity
redshift - Estimated covariances
- SED Reconstruction
- Spectral templates that match the photometry
better - ASQ algorithm dynamically creates and trains SEDs
ugriz
L type z
74Trained LRG Template
- Great calibrator set up to z 0.5 0.6 !
- Reconstructed SED redder than CWW Ell
75Trained LRG Template
76Photometric Redshifts
- 4 discrete templates
- Red sample ?z 0.028
- z gt 0.2 ? ?z 0.026
- Blue sample ?z 0.05
- Continuous type
- Red sample ?z 0.029
- z gt 0.2 ? ?z 0.035
- Blue sample ?z 0.04
- Outliers
- Excluded 2 of galaxies
- Sacrifice?
- Ell type galaxies have better estimates with only
1 SED - Maybe a decision tree?
77?z 0.028
?z 0.05
?z 0.029
?z 0.04
78PhotoZ Plates
- The Goal
- Deeper spectroscopic sample of blue SDSS galaxies
- Blind test
- New calibrator set
- Selection
- Based on photoz results
- Color cuts to get
- High-z objects
- Not red galaxies
79Plate 672
- Scatter is big but
- thats why needed the photoz plates
- The first results
- Galaxies are indeed blue
- and higher redshift!
80Plate 672
- Redshift distributions compare OK of g 519
- Photometric redshifts (Run 752 756)
- Spectroscopic redshifts (Histogram scaled)
81Measures of the Clustering
- The two point correlation function ?(r)
- The power Spectrum
- N-point Statistics
- Counts in Cells
- Topological measures
- Maximum Likelihood parameter estimation
82Constraining Cosmological Parameters from
Apparent Redshift-space Clusterings
Taka Matsubara Alex Szalay
83Constraining Cosmological Parameters
(Traditional) Quadratic Methods
Redshift Survey Data ? or
?
- Effective for spatially homogeneous, isotropic
samples. - However, evaluation of in real
(comoving) space - is not straightforward. (z-evolution,
redshift-space - distortion)
84Example
Redshift-space
85Anisotropy of the clustering
Velocity distortions
real space redshift space
Finger-of-God
(non-linear scales)
Squashing by infall
(linear scales)
86Geometric distortions (non-small z)
real space
redshift space
87Likelihood analysis of cosmological parameters
without direct determination of or
(Bayesian)
Linear regime ? Gaussian,
fully determined by a correlation matrix
Huge matrix ? a novel, fast algorithm to
calculate Cij for
arbirtrary z under development
88Results
single determination
Normal 3 19 16 4 2 0.5 0.5
Red 2 4 9 2 1 0.3 0.4
QSO 14 15 76 20 14 5 6
simultaneous determination (marginalized)
Normal 14 57 51 2
Red 9 10 33 0.9
QSO 170 75 360 69
89Summary
- Direct determinations of cosmological parameters
- A novel, fast algorithm to calculate correlation
matrix - in redshift space
- Normal galaxies dense, low-z, small sample
volume - QSOs sparse, high-z, large sample volume
- Red galaxies intermediate
- ? best constraints on cosmological
parameters
901.0
0.8
0.6
O?
0.4
0.2
0.0
0.0
1.0
0.2
0.4
0.6
0.8
OM
91Visualization
- CAVE VR system at Argonne National Laboratory
- SDSS VS v. 1.0 Windows based visualization
system - Tool directly tied to the skyserver for general
visualization of multi-dimensional data
92Accessing the Data
- Two databases
- Skyserver (MS SQL)
- Skyserver.fnal.gov
- SDSSQT
- Download from www.sdss.org
- Lab astro.uchicago.edu/subbarao/chautauqua.html