SDSS - PowerPoint PPT Presentation

1 / 92
About This Presentation
Title:

SDSS

Description:

PowerPoint Presentation – PowerPoint PPT presentation

Number of Views:243
Avg rating:3.0/5.0
Slides: 93
Provided by: AmandaS86
Category:
Tags: sdss | galaxies | types

less

Transcript and Presenter's Notes

Title: SDSS


1
SDSS
The Sloan Digital Sky Survey
2
Mapping The Universe
3
The SDSS is Two Surveys
The Fuzzy Blob Survey
The Squiggly Line Survey
4
The Site
5
  • The telescope
  • 2.5 m mirror

6
Digital Cameras
7
CCDs
8
CCDs Drift Scan Mode
9
The SDSS ATLAS of GALAXIES
10
HUBBLE's TUNING FORK DIAGRAM
11
NGC 450
12
NGC 1055
13
NGC 4437
14
NGC 5792
15
NGC 1032
16
NGC 4753
17
NGC 60
18
NGC 5492
19
NGC 936
20
NGC 5750
21
NGC 3521
22
NGC 2967
23
NGC 5719
24
UGC 01962
25
NGC 1087
26
NGC 5334
27
UGC 05205
28
UGC 07332
29
UGCA 285
30
Arp 240
31
UCG 08584
32
NGC 799 NGC 800
33
NGC 428
34
UGC 10770
35
Measuring Quantities From the Images The Photo
pipeline
36
How do you measure brightness?
Most People use Magnitudes m 2.5 Log (flux) C
We use Luptitudes
37
OK, but how do you measure flux?
Isophotal magnitudes What we dont do
38
OK, but how do we measure flux?
Petrosian Radius Surface brightness Ratio 0.2
Petrosion flux Flux within 2 Petrosian Radii
39
Some Other Measures
PSF magnitudes
Fiber magnitudes
40
Galaxy Models
de Vaucouleurs magnitudes assume profile
associated with ellipiticals
II0 exp -7.67(r/re)1/4
Exponential magnitudes Assume profile associated
with spirals
II0 exp -1.68(r/re)
Model magnitudes pick best
41
Which Magnitudes to Use?
Photometry of Distant QSOs PSF magnitudes
Colors of Stars PSF magnitudes
Photometry of Nearby Galaxies Petrosian magnitudes
Photometry of Distant Galaxies Petrosian magnitudes
42
Other Image Parameters
  • Size
  • Type
  • psfMag expMag gt 0.145
  • Many hundreds of others

43
SPECTRA
44
An Astronomical Primer of Stellar Spectra
45
  • O
  • B
  • A
  • F
  • G
  • K
  • M
  • L
  • T
  • h
  • e
  • ine
  • irl/Guy
  • iss
  • e

Stellar Spectral Types
ong ime
46
O
Stellar Spectra
47
B
Stellar Spectra
48
A
Stellar Spectra
49
F
Stellar Spectra
50
G
Stellar Spectra
51
K
Stellar Spectra
52
M
Stellar Spectra
53
L
Stellar Spectra
54
T
Stellar Spectra
55
Cataclysmic Variables
Stellar Spectra
56
White Dwarfs
Stellar Spectra
57
Carbon Stars
Stellar Spectra
58
Stellar Spectra
M star White Dwarf
59
Galaxy Spectra
Galaxies Stargas
60
Double Galaxy
61
QSO spectra
Z0.1
62
QSO spectra
Z1
63
QSO spectra
Z2
64
QSO spectra
Z3
65
QSO spectra
Z4
66
QSO spectra
Z5
67
Mapping The Universe
68
Finding Redshifts
69
Types of Maps
  • Main Galaxy Sample
  • LRG sample
  • Photo-z sample
  • QSO sample
  • QSO absorption systems
  • Galactic Halo
  • Ly-a systems
  • Asteroids
  • Space Junk

70
EDR PhotoZ
  • Tamás Budavári
  • The Johns Hopkins University

István Csabai Eötvös University, Budapest Alex
Szalay The Johns Hopkins University Andy
Connolly University of Pittsburgh
71
Pros and Cons
Template fitting
Empirical method
Comparing known spectra to photometry
Redshifts from calibrators with similar colors
no need for calibrators, physics in
templates more physical outcome, spectral type,
luminosity template spectra are not perfect,
e.g. CWW
quick processing time new calibrator set and
fit required for new data cannot extrapolate,
yields dubious results
72
Empirical Methods
  • Nearest neighbor
  • Assign redshift of closest calibrator
  • Polynomial fitting function
  • Quadratic fit, systematic errors
  • Kd-tree
  • Quadratic fit in cells

?z 0.033
?z 0.027
?z 0.023
73
Template Fitting
  • Physical inversion
  • More than just redshift
  • Yield consistent spectral type, luminosity
    redshift
  • Estimated covariances
  • SED Reconstruction
  • Spectral templates that match the photometry
    better
  • ASQ algorithm dynamically creates and trains SEDs

ugriz
L type z
74
Trained LRG Template
  • Great calibrator set up to z 0.5 0.6 !
  • Reconstructed SED redder than CWW Ell

75
Trained LRG Template
76
Photometric Redshifts
  • 4 discrete templates
  • Red sample ?z 0.028
  • z gt 0.2 ? ?z 0.026
  • Blue sample ?z 0.05
  • Continuous type
  • Red sample ?z 0.029
  • z gt 0.2 ? ?z 0.035
  • Blue sample ?z 0.04
  • Outliers
  • Excluded 2 of galaxies
  • Sacrifice?
  • Ell type galaxies have better estimates with only
    1 SED
  • Maybe a decision tree?

77
?z 0.028
?z 0.05
?z 0.029
?z 0.04
78
PhotoZ Plates
  • The Goal
  • Deeper spectroscopic sample of blue SDSS galaxies
  • Blind test
  • New calibrator set
  • Selection
  • Based on photoz results
  • Color cuts to get
  • High-z objects
  • Not red galaxies

79
Plate 672
  • Scatter is big but
  • thats why needed the photoz plates
  • The first results
  • Galaxies are indeed blue
  • and higher redshift!

80
Plate 672
  • Redshift distributions compare OK of g 519
  • Photometric redshifts (Run 752 756)
  • Spectroscopic redshifts (Histogram scaled)

81
Measures of the Clustering
  • The two point correlation function ?(r)
  • The power Spectrum
  • N-point Statistics
  • Counts in Cells
  • Topological measures
  • Maximum Likelihood parameter estimation

82
Constraining Cosmological Parameters from
Apparent Redshift-space Clusterings
Taka Matsubara Alex Szalay
83
Constraining Cosmological Parameters
(Traditional) Quadratic Methods
Redshift Survey Data ? or
?
  • Effective for spatially homogeneous, isotropic
    samples.
  • However, evaluation of in real
    (comoving) space
  • is not straightforward. (z-evolution,
    redshift-space
  • distortion)

84
Example
Redshift-space
85
Anisotropy of the clustering
Velocity distortions
real space redshift space

Finger-of-God

(non-linear scales)

Squashing by infall

(linear scales)
86
Geometric distortions (non-small z)
real space
redshift space
87
Likelihood analysis of cosmological parameters
without direct determination of or
(Bayesian)
Linear regime ? Gaussian,
fully determined by a correlation matrix
Huge matrix ? a novel, fast algorithm to
calculate Cij for
arbirtrary z under development
88
Results
single determination

Normal 3 19 16 4 2 0.5 0.5
Red 2 4 9 2 1 0.3 0.4
QSO 14 15 76 20 14 5 6
simultaneous determination (marginalized)

Normal 14 57 51 2
Red 9 10 33 0.9
QSO 170 75 360 69
89
Summary
  • Direct determinations of cosmological parameters
  • A novel, fast algorithm to calculate correlation
    matrix
  • in redshift space
  • Normal galaxies dense, low-z, small sample
    volume
  • QSOs sparse, high-z, large sample volume
  • Red galaxies intermediate
  • ? best constraints on cosmological
    parameters

90
1.0
0.8
0.6
O?
0.4
0.2
0.0
0.0
1.0
0.2
0.4
0.6
0.8
OM
91
Visualization
  • CAVE VR system at Argonne National Laboratory
  • SDSS VS v. 1.0 Windows based visualization
    system
  • Tool directly tied to the skyserver for general
    visualization of multi-dimensional data

92
Accessing the Data
  • Two databases
  • Skyserver (MS SQL)
  • Skyserver.fnal.gov
  • SDSSQT
  • Download from www.sdss.org
  • Lab astro.uchicago.edu/subbarao/chautauqua.html
Write a Comment
User Comments (0)
About PowerShow.com