Stacks - PowerPoint PPT Presentation

1 / 34
About This Presentation
Title:

Stacks

Description:

stacks, queues * E.G.M. Petrakis stacks, queues * Array Implementation Problem: dequeue creates empty slots Solution(1): move elements: (n) ... – PowerPoint PPT presentation

Number of Views:87
Avg rating:3.0/5.0
Slides: 35
Provided by: intellige1
Category:
Tags: queues | stacks

less

Transcript and Presenter's Notes

Title: Stacks


1
Stacks
  • Stack restricted variant of list
  • elements may by inserted or deleted from only one
    end LIFO lists
  • top the accessible end of the list
  • operations push, pop
  • many applications
  • easy to implement
  • arrays
  • linked lists

2
Array Implementation
  • A simplified version of list implementation
  • array of fixed size
  • top always the first element
  • current is always the top element
  • push insert at top !
  • pop remove from top !

3
Stack ADT
  • interface Stack
  • public void clear( ) //remove all ELEM's
  • public void push(Object it) //push ELEM onto
    stack
  • public Object pop( ) // pop ELEM from top
  • public Object topValue( ) // value of top ELEM
  • public bool isEmpty( ) // TRUE if stack is
    empty

4
class AStack implements Stack // Array based
stack class private static final int
defaultSize 10 private int size //
Maximum size of stack private int top //
Index for top Object private Object
listarray // Array holding stack AStack()
setup(defaultSize) AStack(int sz)
setup(sz) private void setup(int sz) size
sz top 0 listarray new Objectsz
public void clear() top 0 // Clear all
Objects public void push(Object it) // Push
onto stack Assert.notFalse(top lt size,
"Stack overflow") listarraytop it
public Object pop() // Pop Object from top
Assert.notFalse(!isEmpty(), "Empty stack")
return listarray--top public Object
topValue() // Return top Object
Assert.notFalse(!isEmpty(), "Empty stack")
return listarraytop-1 public boolean
isEmpty() return top 0
5
Dynamic Memory Implementation
  • Simplified version of the linked list
    implementation
  • the head and tail pointers of the list
    implementation are not used

6
class LStack implements Stack // Linked stack
class private Link top // Pointer to list
header public LStack() setup() //
Constructor private void setup() //
Initialize stack top null // Create
header node public void clear() top null
// Clear stack public void push(Object it)
// Push Object onto stack top new Link(it,
top) public Object pop() // Pop Object
from top Assert.notFalse(!isEmpty(), "Empty
stack") Object it top.element() top
top.next() return it public Object
topValue() // Get value of top Object
Assert.notFalse(!isEmpty(), "No top value")
return top.element() public boolean
isEmpty() // True if stack is empty return
top null // Linked stack class
7
Applications
  • Checking mathematical expressions
  • Equal number of left/right (, , , ), ,

8
Algorithm
  • Read the expression from left to right
  • p next symbol in expression
  • Repeat until (empty(stack) )
  • read(p)
  • if p ( or or then push(stack,p)
  • loop
  • if p ) or or then c pop(stack)
  • if c ! p then error!!
  • if (not empty(stack) ) then error!!

9
(No Transcript)
10
More Applications
  • Evaluation of arithmetic expressions
  • convert infix to postfix or prefix
  • evaluate postfix or prefix expression
  • infix, prefix, postfix refer to the relative
    position of the operator with respect to the
    operands
  • infix AB
  • prefix AB
  • postfix AB

11
Infix to Postfix or Prefix
  • Read from left to right
  • First convert operations of higher precedence
  • parenthesis have the highest precedence
  • have precedence over
  • , / have the same precedence but higher
    than
  • , - which all have the same precedence
  • The converted prefix or postfix part is treated
    as a single operand
  • If all operators have the same precedence then
    convert from left to right

12
Infix to Postfix or Prefix
  • ABC gt
  • A(BC) equivalent
  • ?(?C) BC to postfix
  • ABC postfix
  • (AB)C () gt
  • (AB)C AB to postfix
  • (AB)C (AB)C to postfix
  • ABC postfix
  • Postfix and Prefix have no parenthesis !!

13
Infix to Postfix or Prefix
  • AB-C ??C- postfix
  • (AB)(C-D) ABCD-
  • ??C-DE/F/(GH) ABCD-EF/GH/
  • A-B/(CDE) ABCDE/-
  • AB-C -ABC prefix
  • (AB)(C-D) AB-CD
  • ABC-DE/F/(GH) -ABCD//EFGH
  • A-B/(CDE) -A/BCDE

14
Convert infix to postfix
  • Read expression from left to right
  • output operands
  • push operators to stack
  • higher precedence operators must be above lower
    precedence operators
  • before pushing an operator into the stack check
    the precedence of operators already in the stack
  • if operator in stack has higher precedence ?
    output this operator and then insert the current
    operator in the stack
  • (, , have higher precedence, push in
    stack
  • if ), , pop stack until (, , is
    found
  • dont output (, , , ), ,

15
Infix to Postfix Example
  • (A B)C
  • push ( in stack
  • output A
  • push in stack
  • output B
  • dont push ), pop all operators
  • output , ignore (, )
  • push in stack
  • output C
  • output

16
Example (A B)C
17
Algorithm
  • stack NULL
  • while (not end of input)
  • symbol read next symbol
  • if (symbol operand) output(symbol)
  • else
  • while(!empty(stack) (preced (stack(top)) gt
    preced(symbol))
  • top symbol pop(stack) output(top
    symbol)
  • push(stack, symbol)
  • while not_empty(stack)
  • top symbol pop(stack)
  • output(top symbol)

18
Evaluation of Postfix
  • While (not end of expression)
  • read symbols from left to right
  • result 0
  • if (symbol operand) push (stack)
  • else
  • operand1 pop(stack)
  • operand2 pop(stack)
  • result operand1 operator operand2
  • push(stack, result)
  • result pop(stack)

19
(No Transcript)
20
Queue
  • Queue elements may only be inserted at the rear
    and removed from the front
  • restricted form of list
  • FIFO first in first out
  • insert enqueue operation
  • remove dequeue operator

21
(No Transcript)
22
Array Implementation
  • If the elements are the first
  • n elements of array and the
  • front element is at position 0
  • enqueue requires T(1) operations but,
  • dequeue requires T(n) operations (all elements
    must be shifted)
  • Condition of empty queue?

23
Front next available position Rear last
position Condition of empty queue rear front
Initial values rearfron LIST_SIZE - 1
front points to the position proceeding the first
element
front 4 rear 4
front 4 rear 0
input A
24
front 4 rear 2
front 4 rear 3
The condition of empty queue is true but the
queue is not empty ? E cannot be inserted The
last array position must be left empty
front 4 rear 4
25
(No Transcript)
26
Queue ADT
  • public interface Queue // Queue ADT
  • public void clear() // Remove all
    Objects from queue
  • public void enqueue(Object it) // Enqueue
    Object at rear of queue
  • public Object dequeue() // Dequeue
    Object from front of queue
  • public Object firstValue() // Return value
    of top Object
  • public boolean isEmpty() // Return TRUE
    if stack is empty

27
class AQueue implements Queue // Array-based
queue class private static final int
defaultSize 10 private int size
// Maximum size of queue private int front
// Index prior to front item private
int rear // Index of rear item
private Object listArray // Array holding
Objects AQueue() setup(defaultSize) //
Constructor default size AQueue(int sz)
setup(sz) // Constructor set size void
setup(int sz) // Initialize queue
size sz1 front rear 0 listArray
new Objectsz1 public void clear()
// Remove all Objects from queue front
rear 0
28
  • public void enqueue(Object it) // Enqueue
    Object at rear
  • Assert.notFalse(((rear1) size) ! front,
    "Queue is full")
  • rear (rear1) size // Increment
    rear (in circle)
  • listArrayrear it
  • public Object dequeue() // Dequeue
    Object from front
  • Assert.notFalse(!isEmpty(), "Queue is
    empty")
  • front (front1) size // Increment
    front
  • return listArrayfront // Return value
  • public Object firstValue() // Return value
    of front Object
  • Assert.notFalse(!isEmpty(), "Queue is
    empty")
  • return listArray(front1) size
  • public boolean isEmpty() // Return true
    if queue is empty
  • return front rear

29
Dynamic Memory Implementation
  • Simple adaptation of the linked list
    implementation
  • current always points to the first element
  • the head pointer of the list implementation is
    not used

30
class LQueue implements Queue // Linked
queue class private Link front
// Pointer to front node private Link rear
// Pointer to rear node public
LQueue() setup() // Constructor
public LQueue(int sz) setup() //
Constuctor Ignore sz private void setup()
// Initialize queue front rear
null // Remove all Objects from queue
public void clear() front rear null
public void enqueue(Object it) // Enqueue
Object at rear of queue if (rear ! null)
// Queue not empty add to end
rear.setNext(new Link(it, null)) rear
rear.next() else front rear new
Link(it, null) // Empty queue
31
public Object dequeue() // Dequeue
Object from front Assert.notFalse(!isEmpty())
// Must be something to dequeue Object it
front.element() // Store dequeued Object
front front.next() // Advance
front if (front null) rear null //
Dequeued last Object return it
// Return Object public
Object firstValue() // Return value of top
Object Assert.notFalse(!isEmpty()) return
front.element() public boolean isEmpty()
// Return true if queue is empty return
front null // classes LQueue
32
Priority Queue
  • Ascending elements in any order but dequeue
    removes the minimum
  • Descending dequeue removes the maximum

33
Example Dequeue
34
Array Implementation
  • Problem dequeue creates empty slots
  • Solution(1) move elements T(n) operations on
    dequeue
  • Solution(2) store elements in ascending
    (descending) order T(n) operations on enqueue
Write a Comment
User Comments (0)
About PowerShow.com