3.5 Quadratic Equations - PowerPoint PPT Presentation

1 / 23
About This Presentation
Title:

3.5 Quadratic Equations

Description:

3.5 Quadratic Equations OBJ: To solve a quadratic equation by factoring DEF: Standard form of a quadratic equation ax2 + bx + c = 0 NOTE: Each equation contains a ... – PowerPoint PPT presentation

Number of Views:236
Avg rating:3.0/5.0
Slides: 24
Provided by: WHRHS
Category:

less

Transcript and Presenter's Notes

Title: 3.5 Quadratic Equations


1
3.5 Quadratic Equations
  • OBJ To solve a quadratic equation by factoring

2
DEF ? Standard form of a quadratic equation
  • ax2 bx c 0
  • NOTE ? Each equation contains a
  • polynomial of the second degree.

3
DEF ? Zero product property
  • If mn 0, then m 0 or n 0 or both 0
  • NOTE ? Solve some quadratic equations by
  • Writing equation in standard form
  • Factoring
  • Setting each factor equal to 0

4
EX ? 5 c 2 7c 6 0
  • 3 5 2
  • 2 1 3
  • -3
  • 3
  • 2
  • 10
  • (5c 3)(c 2) 0
  • c 3/5, -2

5
EX ? 7t 20 3 t 2
  • 3 t 2 7t 20 0
  • 4 3 5
  • 5 1 4
  • -5
  • 5
  • 4
  • 12
  • (3t 5)(t 4) 0
  • t 5/3, -4

6
EX ? 36 25 x 2
  • 25 x 2 36 0
  • (5x 6)(5x 6) 0
  • x 6/5

7
EX ? 2 x 2 5x
  • 2 x 2 5x 0
  • x(2x 5) 0
  • x 0, - 5/2

8
EX? 7 n 2 14n 56 0
  • 7 (n 2 2n 8) 0
  • 7 (n 4)(n 2) 0
  • n - 4, 2

9
EX? y 4 5 y 2 4 0
  • (y 2 4)(y 2 1) 0
  • (y 2)(y 2)(y 1)(y 1) 0
  • Y 2, 1

10
EX? y 4 10 y 2 9 0
  • (y 2 9)(y 2 1) 0
  • (y 3)(y 3)(y 1)(y 1) 0
  • Y 3, 1

11
EX ? y 4 20 y 2
  • y 4 y 2 20 0
  • (y 2 5)(y 2 4) 0
  • (y 2 5)(y 2)(y 2) 0
  • Y iv 5, 2

12
EX ? y 4 12 y 2
  • y 4 y 2 12 0
  • (y 2 4)(y 2 3) 0
  • (y 2)(y 2)(y 2 3) 0
  • Y 2, iv 3

13
6.1 Square Roots
  • OBJ ? To solve a quadratic equation by using
    the definition of square root
  • DEF ? Square root
  • If x 2 k, then x vk, for k 0

14
EX ? 6 y 2 20 8 y 2
  • 7y 2 28
  • y 2 4
  • y 2

15
EX ? 3 n 2 9 7 n 2 35
  • 44 4n 2
  • 11 n 2
  • v11 n

16
7.3 The Quadratic Formula
  • OBJ ? To solve a quadratic equation by using the
    quadratic formula
  • DEF ? The quadratic formula
  • x -b vb2 4ac
  • 2a

17
EX ? 4 x 2 7x 2 0
  • x -(-7) v(-7)2 4(4)(2)
  • 2(4)
  • 7 v49 32
  • 8
  • 7 v17
  • 8

18
EX ? 9 x 2 12x 1
  • 9 x 2 12x 1 0
  • x -(-12)v(-12)2 4(9)(1)
  • 2(9)
  • 12 v144 36
  • 18
  • 12 v108
  • 18
  • 12 6v3
  • 18
  • 12 6v3
  • 18
  • 6(2 v3)
  • 18
  • 3
  • 2 v3
  • 3

19
EX ? 6 x 2 5x 0
  • x(6x 5) 0
  • x 0, -5/6

20
EX 8 ? 72 x 2 0
  • x 2 72
  • x 6v2

21
8.3 Equations With Imaginary Number Solutions
  • OBJ To solve an equation whose solutions are
    imaginary

22
EX ? 2 x 2 7 6x
  • 2 x 2 6x 7 0
  • x -(-6)v(-6)2 4(2)(7)
  • 2(2)
  • 6 v36 56
  • 4
  • 6 v-20
  • 4
  • 6 2iv5
  • 4
  • 2(3 iv5)
  • 4
  • 2(3 iv5)
  • 4
  • 2
  • 3 iv5
  • 2

23
EX ? 27 6 y 2 y 4
  • y 4 6 y 2 27 0
  • (y 2 9)(y 2 3) 0
  • y 3i, v3
Write a Comment
User Comments (0)
About PowerShow.com