Title: Efficient Sequential Aggregate Signed Data
1Efficient Sequential Aggregate Signed Data
- Gregory Neven
- IBM Zurich Research Laboratory
- work done while at K.U.Leuven
2Digital signatures
(pk,sk) ? KeyGen()
(pk),M,s
s ? Sign(sk,M)
0/1 ? Verify(pk,M,s)
3Digital signatures
s1 ? Sign(sk1,M1)
(pk1,,pkn),M1,,Mn, s1,, sn
s1
sn
i 0/1 ? Verify(pki,Mi,si)
A
sn ? Sign(skn,Mn)
4Aggregate signatures (AS)
BGLS03
s1 ? Sign(sk1,M1)
(pk1,,pkn),M1,,Mn, s
s1
sn
s ? Agg(s1,,sn)
0/1 ? Verify(pk,M,s)
sn ? Sign(skn,Mn)
- Goal s lt s1 sn , preferably
constant - Motivation certificate chains secure routing
protocols save bandwidth ( battery life) for
wireless devices
5Sequential aggregate signatures (SAS)
LMRS04
s1 ? Sign(sk1,M1)
s1
s2 ? Sign(sk2,M2,s1)
sn-1
(pk1,,pkn),M1,,Mn, s
s sn ? Sign(skn,Mn,sn-1)
0/1 ? Verify(pk,M,s)
- Goal s lt s1 sn , preferably
constant - Motivation certificate chains secure routing
protocols save bandwidth ( battery life) for
wireless devices
6Existing (S)AS schemes
Scheme Type Based on Key model RO
BGLS AS pairings plain Y
LMRS SAS RSA plain Y
LOSSW SAS pairings KoSK N
7Drawbacks of existing schemes
- Current drawbacks of pairings (BGLS, LOSSW)
- trust in assumptions vs. factoring, RSA
- no standardization
- implementations
- Rather inefficient verification (BGLS, LMRS)
- BGLS n pairings
- LMRS certified claw-free trapdoor permutations
- instantiation from RSA requires e gt N
- ? verification signing n full-length exps
- Weak key setup model (LOSSW)
- plain public-key vs. knowledge of secret key
(KOSK)
8Drawbacks of existing schemes
- Security parameter flexibility (BGLS, LMRS,
LOSSW) - e.g. certificate chains
- BGLS, LOSSW no flexibility whatsoever
- LMRS increasing modulus size only
- ? exact opposite of what we need
- No (S)AS schemes for currently existing
keys/certificates!
security level
cert1 ? Sign(sk1, ID2pk2)
cert1
1
cert2 ? Sign(sk2, IDUpk, cert1)
2
cert2
s ? Sign(sk, M, cert2)
U
9Our contributions
- Generalization of SAS to SASD
- SASD scheme with
- instantations from low-exponent RSA and factoring
- efficient signing (1 exp O(n) mult) and
- verification (O(n) mult)
- full flexibility in modulus size
- compatible with existing RSA/Rabin keys and
certificates - Pure SAS scheme with same properties
- Generalization of multi-signatures to
multi-signed data (MSD) - Non-interactive MSD scheme from RSA and factoring
- (no pairings)
10Sequential aggregate signatures
LMRS04
s1 ? Sign(sk1,M1)
s1
s2 ? Sign(sk2,M2,s1)
sn-1
(pk1,,pkn),M1,,Mn, s
s sn ? Sign(skn,Mn,sn-1)
0/1 ? Verify(pk,M,s)
11Sequential aggregate signed data (SASD)
S1 ? Sign(sk1,M1)
S1
S2 ? Sign(sk2,M2,S1)
Sn-1
S
S Sn ? Sign(skn,Mn,Sn-1)
(pk,M)/ ? Verify(S)
-
- Goal minimize net overhead S M1
Mn
12SASD scheme intuition
Step 1. Full-domain hash with message
recovery Trapdoor permutation p, message M mµ
H
m
µ
M
G
p
-1
X
h
m
S
net overhead 160 bits
13SASD scheme intuition
Step 1. Full-domain hash with message
recovery Trapdoor permutation p, message M mµ
H
m
µ
M
G
p
X
h
m
S
net overhead 160 bits
14SASD scheme intuition
Step 2. Aggregating the hashes
H
m1
µ1
M1
G
-1
p
1
X1
h1
m1
S1
H
m2
µ2
M2
G
-1
p
2
X2
h2
m2
S2
net overhead 2160 320 bits
15SASD scheme intuition
Step 2. Aggregating the hashes (intuition only
insecure!)
H
m1
µ1
M1
G
-1
p
1
X1
h1
m1
S1
H
m2
µ2
M2
G
-1
p
2
X2
h2
m2
S2
net overhead 160 bits
16SASD scheme intuition
Step 2. Aggregating the hashes (intuition only
insecure!)
H
m1
µ1
M1
G
p
1
X1
h1
m1
S1
H
m2
µ2
M2
G
p
2
X2
h2
m2
S2
net overhead 160 bits
17SASD scheme intuition
Step 3. Recovering any type of data (intuition
only insecure!)
H
m1
µ1
M1
G
-1
p
1
X1
h1
m1
S1
H
M2
X1
G
-1
p
2
X2
h2
M2
S2
net overhead 160 bits
18The SASD scheme
- Step 4. Getting the details right see paper.
- Theorem. If there exists a forger that
(t,qS,qH,qG,n,e)-breaks SASD in the random oracle
model, then there exists an algorithm that
(t,e)-finds a claw in ?, where
19Comparison of SAS(D) schemes
Scheme Based on Overhead( pk) Sign Verify
BGLS pairings 160 1 E n P
LOSSW pairings 320 2 P 160n M 2 P 160n M
LMRS RSA 1024 n E n E
SASD RSA, factoring 1601184 1 E 2n M 2n M
SAS RSA, factoring 1184 1 E 2n M 2n M
P pairing E exponentiation M
multiplication n signatures in aggregate
20Non-interactive multi-signatures (MS)
n signatures on same message M
Sign(sk1,M)
s1
(pk1,,pkn), M, s
sn
0/1 ? Verify(pk,M,s)
S ? Agg(s1,, sn)
Sign(skn,M)
21Non-interactive multi-signed data (MSD)
n signatures on same message M
Sign(sk1,M)
S1
S
Sn
(pk,M)/ ? Verify(S)
S ? Agg(S1,, Sn)
-
Sign(skn,M)
- Goal minimize net overhead S M
22MSD scheme
Each partial signature contains part of M
H
m1
µ1
M
m2
m3
µ2
µ3
m4
G
G
-1
p
G
1
-1
p
2
-1
p
3
h
m1
S1
S
m2
m3
S2
S3
m4
net overhead 160 bits
- Who takes which part of M?
- Fully non-interactive pos hash(pi,M)
- Known co-signers fixed (e.g. lexicographic) order
23Comparison of MS(D) schemes
Scheme Based on Overhead( pk) Sign Verify
Bol pairings 160 1 E 2 P n M
LOSSW pairings 320 2 E 160 M 2 P (160n) M
MSD RSA, factoring 160 1024n 160 1 E 2n M 2n M
P pairing E exponentiation M
multiplication n signatures in aggregate
24Closing remarks
- In summary propose SAS, SASD, MSD schemes
- first based on low-exponent RSA and factoring
- outperform existing schemes in many respects
- free choice of modulus size
- work with existing RSA/Rabin keys
- Tight reduction using Katz-Wang, or next talk
- Full version ePrint Report 2008/063