LL(1) Parsing - PowerPoint PPT Presentation

1 / 21
About This Presentation
Title:

LL(1) Parsing

Description:

LL(1) Parsing Programming Language Concepts Lecture 7 Prepared by Manuel E. Berm dez, Ph.D. Associate Professor University of Florida Example Build the LL(1) parse ... – PowerPoint PPT presentation

Number of Views:113
Avg rating:3.0/5.0
Slides: 22
Provided by: ManuelB55
Learn more at: https://www.cise.ufl.edu
Category:
Tags: parsing

less

Transcript and Presenter's Notes

Title: LL(1) Parsing


1
LL(1) Parsing
Programming Language Concepts Lecture 7
  • Prepared by
  • Manuel E. Bermúdez, Ph.D.
  • Associate Professor
  • University of Florida

2
Example
  • Build the LL(1) parse table for the following
    grammar.
  • S ? begin SL end begin
  • ? id E id
  • SL ? SL S begin,id
  • ? S begin,id
  • E ? ET (, id
  • ? T (, id
  • T ? PT (, id
  • ? P (, id
  • P ? (E) (
  • ? id id




- not LL(1)
3
(No Transcript)
4
Example (contd)
  • Lemma Left recursion always produces a
    non-LL(1) grammar (e.g., SL, E above)
  • Proof Consider
  • A ? A? First (?) or Follow (A)
  • ? ? First (?) Follow (A)

5
Problems with our Grammar
  • SL is left recursive.
  • E is left recursive.
  • T ? P T both begin with the same ? P
    sequence of symbols (P).

6
Solution to Problem 3
  • Change T ? P T (, id
  • ? P (, id
  • to T ? P X (, id
  • X ? T
  • ? , , )
  • Follow(X)
  • Follow(T) due to T ? P X
  • Follow(E) due to E ? ET , E ? T
  • , , ) due to E ? ET, S ? id E
  • and P ? (E)

Disjoint!
7
Solution to Problem 3 (contd)
  • In general, change
  • A ? ??1
  • ? ??2
  • . . .
  • ? ??n
  • to A ? ? X
  • X ? ?1
  • . . .
  • ? ?n

Hopefully all the ?s begin with different symbols
8
Solution to Problems 1 and 2
  • We want (((( T T) T) T))
  • Instead, (T) (T) (T) (T)
  • Change E ? E T (, id
  • ? T (, id
  • To E ? T Y (, id
  • Y ? T Y
  • ? , )
  • Follow(Y) ? Follow(E)
  • , )

No longer contains , because we eliminated the
production E ? E T
9
Solution to Problems 1 and 2 (contd)
  • In general,
  • Change A ? A?1 A ? ? 1
  • . . . . . .
  • ? A?n ? ? m
  • to A ? ?1 X X ? ?1 X
  • . . . . . .
  • ? ?m X ? ?n X
  • ?

10
Solution to Problems 1 and 2 (contd)
  • In our example,
  • Change SL ? SL S begin, id
  • ? S begin, id
  • To SL ? S Z begin, id
  • Z ? S Z begin, id
  • ? end

11
Modified Grammar
  • S ? begin SL end begin
  • ? id E id
  • SL ? S Z begin,id
  • Z ? S Z begin,id
  • ? end
  • E ? T Y (,id
  • Y ? T Y
  • ? ,)
  • T ? P X (,id
  • X ? T
  • ? ,,)
  • P ? (E) (
  • ? id id

Disjoint. Grammar is LL(1)
12
(No Transcript)
13
(No Transcript)
14
Recursive Descent Parsing
  • Top-down parsing strategy, suitable for LL(1)
    grammars.
  • One procedure per nonterminal.
  • Contents of stack embedded in recursive call
    sequence.
  • Each procedure commits to one production, based
    on the next input symbol, and the select sets.
  • Good technique for hand-written parsers.

15
For our Modified, LL(1) Grammar
  • proc S S ? begin SL end
  • ? id E
  • case Next_Token of
  • T_begin Read(T_begin)
  • SL
  • Read (T_end)
  • T_id Read(T_id)
  • Read (T_)
  • E
  • Read (T_)
  • otherwise Error
  • end
  • end

Read (T_X) verifies that the upcoming token is
X, and consumes it.
Next_Token is the upcoming token.
16
For our Modified, LL(1) Grammar (contd)
  • proc SL SL ? SZ
  • S
  • Z
  • end
  • proc E E ? TY
  • T
  • Y
  • end

Technically, should have insisted that Next Token
be either T_begin or T_id, but S will do that
anyway. Checking early would aid error
recovery.
// Ditto for T_( and T_id.
17
For our Modified, LL(1) Grammar (contd)
  • proc ZZ ? SZ
  • ?
  • case Next Token of
  • T_begin, T_id SZ
  • T_end
  • otherwise Error
  • end
  • end

18
For our Modified, LL(1) Grammar (contd)
Could have used a case statement
  • proc Y Y ? TY
  • ?
  • if Next Token T_ then
  • Read (T_)
  • T
  • Y
  • end
  • proc T T ? PX
  • P
  • X
  • end

Could have checked for T_( and T_id.
19
For our Modified, LL(1) Grammar (contd)
  • proc XX ? T
  • ?
  • if Next Token T_ then
  • Read (T_)
  • T
  • end

20
For our Modified, LL(1) Grammar (contd)
  • proc P P ?(E)
  • ? id
  • case Next Token of
  • T_( Read (T_()
  • E
  • Read (T_))
  • T_id Read (T_id)
  • otherwise Error
  • end
  • end

21
LL(1) Parsing
Programming Language Concepts Lecture 7
  • Prepared by
  • Manuel E. Bermúdez, Ph.D.
  • Associate Professor
  • University of Florida
Write a Comment
User Comments (0)
About PowerShow.com