Image Enhancement - PowerPoint PPT Presentation

1 / 28
About This Presentation
Title:

Image Enhancement

Description:

Chapter Image Enhancement Analysis and applications of remote sensing imagery Instructor: Dr. Cheng-Chien Liu Department of Earth Sciences National Cheng Kung University – PowerPoint PPT presentation

Number of Views:251
Avg rating:3.0/5.0
Slides: 29
Provided by: Dr757
Category:

less

Transcript and Presenter's Notes

Title: Image Enhancement


1
Chapter
  • Image Enhancement
  • Analysis and applications of remote sensing
    imagery
  • Instructor Dr. Cheng-Chien Liu
  • Department of Earth Sciences
  • National Cheng Kung University
  • Last updated 5 June 2015

2
Introduction
  • Image enhancement
  • Mind ? excellent interpreter
  • Eye ? poor discriminator
  • Computer ? amplify the slight differences to make
    them readily observable
  • Categorization of image enhancement
  • Point operation
  • Local operation
  • Order
  • Restoration ? noise removal ? enhancement

3
Contrast manipulation
  • Gray-level thresholding
  • Segment
  • Fig 7.11
  • (a) TM1
  • (b) TM4
  • (c) TM4 histogram
  • (d) TM1 brightness variation in water areas only
  • Level-slicing
  • Divided into a series of analyst-specified slices
  • Fig 7.12

4
Contrast manipulation (cont.)
  • Contrast stretching
  • Accentuate the contrast between features of
    interest
  • Fig 7.13
  • (a) Original histogram
  • (b) No stretch
  • (c) Linear stretch
  • Fig 7.14 linear stretch algorithm, look-up table
    (LUT) procedure
  • (d) Histogram-equalized stretch
  • (e) Special stretch
  • Fig 7.15 Effect of contrast stretching
  • (a) Features of similar brightness are virtually
    indistinguishable
  • (b) Stretch that enhances contrast in bright
    image areas
  • (c) Stretch that enhances contrast in dark image
    areas
  • Non-linear stretching sinusoidal, exponential,
  • Monochromatic ? color composite

5
Spatial feature manipulation
  • Spatial filtering
  • Spectral filter ? Spatial filter
  • Spatial frequency
  • Roughness of the tonal variations occurring in an
    image
  • High ? rough
  • e.g. across roads or field borders
  • Low ? smooth
  • e.g. large agricultural fields or water bodies
  • Spatial filter ? local operation
  • Low pass filter (Fig 7.16b)
  • Passing a moving window throughout the original
    image
  • High pass filter (Fig 7.16c)
  • Subtract a low pass filtered image from the
    original, unprocessed image

6
Spatial feature manipulation (cont.)
  • Convolution
  • The generic image processing operation
  • Spatial filter ? convolution
  • Procedure
  • Establish a moving window (operators/kernels)
  • Moving the window throughout the original image
  • Example
  • Fig 7.17
  • (a) Kernel
  • Size odd number of pixels (3x3, 5x5, 7x7, )
  • Can have different weighting scheme (Gaussian
    distribution, )
  • (b) original image DN
  • (c) convolved image DN
  • Pixels around border cannot be convolved

7
Spatial feature manipulation (cont.)
  • Edge enhancement
  • Typical procedures
  • Roughness ? kernel size
  • Rough ? small
  • Smooth ? large
  • Add back a fraction of gray level to the high
    frequency component image
  • High frequency ? exaggerate local contrast but
    lose low frequency brightness information
  • Contrast stretching
  • Directional first differencing
  • Determine the first derivative of gray levels
    with respect to a given direction
  • Normally add the display value median back to
    keep all positive values
  • Contrast stretching
  • Example
  • Fig 7.20a original image
  • Fig 7.20b horizontal first difference image
  • Fig 7.20c vertical first difference image
  • Fig 7.20d diagonal first difference image
  • Fig 7.21 cross-diagonal first difference image ?
    highlight all edges

8
Spatial feature manipulation (cont.)
  • Fourier analysis
  • Spatial domain ? frequency domain
  • Fourier transform
  • Quantitative description
  • Conceptual description
  • Fit a continuous function through the discrete DN
    values if they were plotted along each row and
    column in an image
  • The peaks and valleys along any given row or
    column can be described mathematically by a
    combination of sine and cosine waves with various
    amplitudes, frequencies, and phases
  • Fourier spectrum
  • Fig 7.22
  • Low frequency ? center
  • High frequency ? outward
  • Vertical aligned features ? horizontal components
  • Horizontal aligned features ? vertical components

9
Spatial feature manipulation (cont.)
  • Fourier analysis (cont.)
  • Inverse Fourier transform
  • Spatial filtering (Fig 7.23)
  • Noise elimination (Fig 7.24)
  • Noise pattern ? vertical band of frequencies ?
    wedge block filter
  • Summary
  • Most image processing ? spatial domain
  • Frequency domain (e.g. Fourier transform) ?
    complicate and computational expensive

10
Multi-image manipulation
  • Spectral ratioing
  • DNi / DNj
  • Advantage
  • Convey the spectral or color characteristics of
    image features, regardless of variations in scene
    illumination conditions
  • Fig 7.25
  • deciduous trees ? coniferous trees
  • Sunlit side ? shadowed side
  • Example NIR/Red ? stressed and nonstressed
    vegetation ? quantify relative vegetation
    greenness and biomass
  • Number of ratio combination Cn2
  • Landsat MSS 12
  • Landsat TM or ETM 30

11
Multi-image manipulation (cont.)
  • Spectral ratioing (cont.)
  • Fig 7.26 ratioed images derived from Landsat TM
    data
  • (a) TM1/TM2 highly correlated ? low contrast
  • (b) TM3/TM4
  • Red road?, water? ? lighter tone
  • NIR vegetation? ? darker tone
  • (c) TM5/TM2
  • Green and MIR vegetation? ? lighter tone
  • But some vegetation looks dark ? discriminate
    vegetation type
  • (d) TM3/TM7
  • Red road?, water? ? lighter tone
  • MIR low but varies with water turbidity ? water
    turbidity
  • False color composites ? twofold advantage
  • Too many combination ? difficult to choose
  • Landsat MSS C(4, 2)/2 6, C(6, 3) 20
  • Landsat TM C(6, 2)/2 15, C(15, 3) 455
  • Optimum index factor (OIF)
  • Variance? correlation ?? OIF?
  • Best OIF for conveying the overall information in
    a scene may not be the best OIF for conveying the
    specific information ? need some trial and error

12
Multi-image manipulation (cont.)
  • Spectral ratioing (cont.)
  • Intensity blind ? troublesome
  • Hybrid color ratio composite one ratio another
    band
  • Noise removal is an important prelude
  • Spectral ratioing enhances noise patterns
  • Avoid mathematically blow up the ratio
  • DN? R arctan(DNx/DNy)
  • arctan ranges from 0 to 1.571. Typical value of R
    is chosen to be 162.3 ? DN?ranges from 0 to 255

13
Multi-image manipulation (cont.)
  • Principal and canonical components
  • Two techniques
  • Reduce redundancy in multispectral data
  • Extensive interband correlation problem (Fig
    7.49)
  • Prior to visual interpretation or classification
  • Example Fig 7.27
  • DNI a11DNA a12DNB DNII a21DNA a22DNB
  • Eigenvectors (principal components)
  • The first principal component (PC1) ? the
    greatest variance
  • Example Fig 7.28 ? Fig 7.29 (principal
    component)
  • (A) alluvial material in a dry stream valley
  • (B) flat-lying quanternary and tertiary basalts
  • (C) granite and granodiorite intrusion

14
Multi-image manipulation (cont.)
  • Principal and canonical components (cont.)
  • Intrinsic dimensionality (ID)
  • Landsat MSS PC1PC2 explain 99.4 variance ? ID
    2
  • PC4 depicts little more than system noise
  • PC2 and PC3 illustrate certain features that were
    obscured by the more dominant patterns shown in
    PC1
  • Semicircular feature in the upper right portion
  • Principal ? Canonical
  • Little prior information concerning a scene is
    available ? Principal
  • Information about particular features of interest
    is known ? Canonical
  • Fig 7.27b
  • Three different analyst-defined feature types (D,
    ?, )
  • Axes I and II ? maximize the separability of
    these classes and minimize the variance within
    each class
  • Fig 7.30 Canonical component analysis

15
Multi-image manipulation (cont.)
  • Vegetation components
  • AVHRR
  • VI (vegetation index)
  • NDVI (normalized difference vegetation index)
  • Landsat MSS
  • Tasseled cap transformation (Fig 7.31)
  • Brightness ? soil reflectance
  • Greenness ? amount of green vegetation
  • Wetness ? canopy and soil moisture
  • TVI (transformed vegetation index)
  • Fig 7.32, Fig 5.8, Plate 14
  • TVI ? green biomass
  • Precision crop management, precision farming,
    irrigation water, fertilizers, herbicides, ranch
    management, estimation of forage,
  • GNDVI (green normalized difference vegetation
    index)
  • Same formulation as NDVI, except the green band
    is substituted for the red band
  • Leaf chlorophyll levels, leaf area index values,
    the photosynthetically active radiation absorbed
    by a crop canopy
  • MODIS
  • EVI (enhanced vegetation index)

16
Multi-image manipulation (cont.)
  • Intensity-Hue-Saturation color space transform
  • Fig 7.33 RGB color cube
  • 28 ? 28 ? 28 16,777,216
  • Gray line
  • True color composite (B, G, R) ? false color
    composite (G, R, NIR)
  • Fig 7.34 Planar projection of the RGB color cube
  • Fig 7.35 Hexcone color model (RGB ? IHS)
  • Intensity
  • Hue
  • Saturation
  • Fig 7.36 advantage of HIS transform
  • Data fusion Plate 19 (merger of IKONOS data)
  • 1m panchromatic ? I?
  • 4m multispectral ? RGB ? HIS
  • Histogram matching I and I?
  • I?HS ? R?G?B?

17
Tutorial mosaicking images
  • Mosaicking (??)
  • The art of combining multiple images into a
    single composite image
  • No-georeferenced images
  • Georeferenced images
  • Feathering
  • Edge feathering
  • The edge is blended using a linear ramp that
    averages the two images across the specified
    distance
  • Specified distance XX pixels, top image XX,
    bottom image XX
  • Cutline feathering
  • The annotation file must contain a polyline
    defining the cutline that is drawn from
    edge-to-edge and a symbol placed in the region of
    the image that will be cut off.

18
Tutorial mosaicking images (cont.)
  • Pixel-Based Mosaicking
  • Map ? Mosaicking ? Pixel Based
  • Pixel Based Mosaic dialog
  • Import ? Import Files
  • avmosaic directory
  • File dv06_2.img.
  • Mosaic Input Files dialog
  • File dv06_3.img.
  • Mosaic Input Files dialog, hold down the Shift
    key and click on the dv06_2.img and dv06_3.img
    filenames to select them.
  • Select Mosaic Size dialog
  • X Size 614
  • Y Size 1024
  • Pixel Based Mosaic dialog, click on the
    dv06_3.img filename.
  • YO 513
  • File ? Apply
  • Create a virtual mosaic
  • File ? Save Template
  • Output Mosaic Template
  • Display the mosaicked image

19
Tutorial mosaicking images (cont.)
  • Pixel-Based Mosaicking (cont.)
  • Positioning two images into a composite mosaic
    image
  • Options?Change Mosaic Size
  • Select Mosaic Size dialog
  • X Size 768
  • Y Size 768
  • Left-click within the green graphic outline of
    image 2
  • Drag the 2 image to the lower right hand corner
    of the diagram.
  • Right-click within the red graphics outline of
    image 3 and select Edit Entry
  • Data Value to Ignore 0
  • Feathering Distance 25
  • Repeat the previous two steps for the other
    image.
  • File ??Save Template
  • Load Band
  • No feathering is performed when using virtual
    mosaic.
  • File ??Apply
  • Background Value of 255
  • Display
  • Compare the virtual mosaic and the feathered
    mosaic using image linking and dynamic overlays

20
Tutorial mosaicking images (cont.)
  • Map Based Mosaicking
  • Map ? Mosaicking ? Georeferenced
  • File ? Restore Template
  • File lch_a.mos
  • Optionally Input and Position Images
  • Images will automatically be placed in their
    correct geographic locations The location and
    size of the georeferenced images will determine
    the size of the output mosaic.
  • View the Top Image, Cutline and Virtual,
    Non-Feathered Mosaic
  • Load Band lch_01w.img
  • Right-click to display the shortcut menu and
    select Toggle ? Display Scroll Bars to turn on
    scroll bars
  • Overlay ? Annotation
  • File ? Restore Annotation
  • File lch_01w.ann
  • Load Band lch_02w.img
  • File ? Open Image File
  • File lch_a.mos
  • Create the Output Feathered Mosaic
  • File ? Apply
  • Compare

21
Tutorial mosaicking images (cont.)
  • Color Balancing During Mosaicking
  • Create the Mosaic Image without Color Balancing
  • Map ??Mosaicking ??Georeferenced
  • Import ??Import Files
  • Open File avmosaic directory, File
    mosaic1_equal.dat
  • Open File avmosaic directory, File mosaic_2.dat
  • select the mosaic_2.dat file, then hold down the
    Shift key and select the mosaic1_equal.dat file
  • Show RGB color composites of these multispectral
    images
  • Edit Entry
  • Mosaic Display, choose RGB.
  • For Red choose 1, for Green choose 2, and for
    Blue choose 3
  • Repeat
  • Two images are stretched independently

22
Tutorial mosaicking images (cont.)
  • Color Balancing During Mosaicking (cont.)
  • Output the Mosaic Without Color Balancing
  • File ? Apply
  • The seams between the two images are quite
    obvious
  • Output the Mosaic With Color Balancing
  • mosaic1_equal.dat
  • Edit Entry.
  • Color Balancing Adjust.
  • mosaic_2.dat
  • Edit Entry.
  • Color Balancing Fixed
  • File ? Apply.
  • Color Balance using
  • stats from overlapping regions/
  • stats from complete files
  • Display
  • The seams between the two images are much less
    visible

23
Tutorial Data fusion
  • Data Fusion
  • The process of combining multiple image layers
    into a single composite image
  • Enhance the spatial resolution of multispectral
    datasets using higher spatial resolution
    panchromatic data or singleband SAR data.
  • Landsat TM and SPOT data fusion
  • File ??Open External File ??IP Software ??ER
    Mapper
  • Subdirectory lontmsp
  • File lon_tm.ers
  • Load RGB to display a true-color Landsat TM image
  • File ??Open External File ??IP Software ??ER
    Mapper
  • Subdirectory lontmsp
  • File lon_spot.ers
  • Load Band to display the gray scale SPOT image

24
Tutorial Data fusion (cont.)
  • Landsat TM and SPOT data fusion (cont.)
  • Resize Images to Same Pixel Size
  • Check spatial dimensions (2820 x 1569) and (1007
    x 560)
  • The Landsat data 28 meters
  • The SPOT data 10 meters
  • The Landsat image has to be resized by a factor
    of 2.8 to create 10 m data that matches the SPOT
    data
  • Basic Tools ??Resize Data (Spatial/Spectral)
  • choose the lon_tm image
  • Resize Data Parameters
  • Enter a value of 2.8 into the xfac text box
  • Enter a value of 2.8009 into the yfac text box
  • Tools ??Link ??Link Displays
  • Perform Manual HSI Data Fusion
  • Forward HSV Transform
  • Transform ??Color Transforms ??RGB to HSV
  • Select the resized TM data as the RGB image from
    the Display
  • Display the Hue, Saturation, and Value images as
    gray scale images or an RGB.
  • Create a Stretched SPOT Image to Replace TM Band
    Value
  • Basic Tools ??Stretch Data

25
Tutorial Data fusion (cont.)
  • Landsat TM and SPOT data fusion (cont.)
  • Inverse HSV Transform
  • Transform ??Color Transforms ??HSV to RGB
  • Select the transformed TM Hue and Saturation
    bands as the H and S bands
  • Choose the stretched SPOT data as the V band
  • Display Results
  • ENVI Automated HSV Fusion
  • Transform ??Image Sharpening ??HSV from the ENVI
    main menu.
  • Select Input RGB Input Bands dialog
  • Choose the TM image RGB bands
  • High Resolution Input File dialog
  • Choose the SPOT image
  • HSV Sharpening Parameters dialog
  • File lontmsp.img
  • Display Results, Link and Compare
  • Color Normalized (Brovey) Transform
  • Try the same process using
  • Transform ??Image Sharpening ??Color Normalized
    (Brovey)

26
Tutorial Data fusion (cont.)
  • SPOT PAN and XS fusion
  • File ? Open Image File
  • Subdirectory brestsp
  • File s_0417_2.bil
  • Load RGB to display a falsecolor infrared SPOT-XS
    image with 20 m spatial resolution
  • File ? Open Image File
  • File s_0417_1.bil
  • Load Band to display the SPOT Panchromatic data.
  • Resize Images to Same Pixel Size
  • Check spatial dimensions (2835 x 2227) and (1418
    x 1114)
  • The SPOT-XS image has to be resized by a factor
    of 2.0
  • Basic Tools ? Resize Data (Spatial/Spectral)
  • Choose the SPOTXS image (s_0417_2.bil)
  • Resize Data Parameters dialog
  • Enter a value of 1.999 into the xfac
  • Enter a value of 1.999 into the yfac
  • Tools ? Link ? Link Displays
  • Fuse Using ENVI Methods
  • Transform ? Image Sharpening ? HSV

27
Tutorial Data fusion (cont.)
  • Landsat TM and SAR Data Fusion
  • Read and Display Images
  • File ? Open Image File
  • Subdirectory rometm_ers
  • File rome_ers2
  • Load Band
  • File ? Open Image File
  • File rome_tm
  • Load RGB to display a false-color infrared
    Landsat TM image with 30m spatial resolution
  • Register the TM images to the ERS image
  • Map ? Registration ? Select GCPs Image-to-Image
  • Base Image Display 1 (the ERS data)
  • Warp Image Display 2 (the TM data)
  • File ? Restore GCPs from ASCII
  • Ground Control Points Selection dialog
  • GCP file rome_tm.pts
  • Options ? Warp File
  • File rome_tm
  • Registration Parameters dialog

28
Tutorial Data fusion (cont.)
  • Landsat TM and SAR Data Fusion (cont.)
  • Perform HSI Transform to Fuse Data
  • Transform ? Image Sharpening ? HSV
  • Select Input RGB Input Bands
  • High Resolution Input File dialog
  • Choose the ERS-2 image
  • Display and Compare Results
Write a Comment
User Comments (0)
About PowerShow.com