Lucas-Kanade Image Alignment - PowerPoint PPT Presentation

About This Presentation
Title:

Lucas-Kanade Image Alignment

Description:

Lucas-Kanade Image Alignment Iain Matthews * * * * * * Linear model so can project for shape and appearance from combined space. Movie is (shape free) appearance ... – PowerPoint PPT presentation

Number of Views:70
Avg rating:3.0/5.0
Slides: 30
Provided by: iai5
Learn more at: http://www.cs.cmu.edu
Category:

less

Transcript and Presenter's Notes

Title: Lucas-Kanade Image Alignment


1
Lucas-Kanade Image Alignment
  • Iain Matthews

2
Paper Reading
  • Simon Baker and Iain Matthews,
  • Lucas-Kanade 20 years on A Unifying Framework,
    Part 1
  • http//www.ri.cmu.edu/pub_files/pub3/baker_simon_2
    002_3/baker_simon_2002_3.pdf
  • And Project 3 Description

3
Recall - Image Processing Lecture
  • Some operations preserve the range but change the
    domain of f
  • What kinds of operations can this perform?
  • Still other operations operate on both the domain
    and the range of f .

4
Face Morphing
5
(No Transcript)
6
(No Transcript)
7
Applications of Image Alignment
  • Ubiquitous computer vision technique
  • Mosaicing
  • Tracking
  • Parametric and layered motion estimation
  • Image registration and alignment
  • Face coding / parameterization
  • Super-resolution

8
Generative Model for an Image
  • Parameterized model

shape
Parameters
Image
appearance
9
Fitting a Model to an Image
  • What are the best model parameters to match an
    image?

shape
Parameters
Image
appearance
  • Nonlinear optimization problem

10
Active Appearance Model
  • Cootes, Edwards, Taylor, 1998

11
Image Alignment
12
Want to Minimize the Error
  • Warp image to get compute

13
How to Minimize the Error
  • Minimise SSD with respect to p,

Generally a nonlinear optimisation problem ?
14
Linearize
  • Taylor series expansion, linearize function f
    about x0

15
Gradient Descent Solution
  • Least squares problem, solve for ?p

16
Gradient Images
  • Compute image gradient

W(xp)
W(xp)
I(W(xp))
17
Jacobian
  • Compute Jacobian
  • Mesh parameterization

4
1
4
1
Warp, W(xp)
Template, T(x)
Image, I(x)
3
2
3
2
Image coordinates x (x, y)T
Warp parameters, p (p1, p2, , pn)T (dx1,
dy1, , dxn, dyn)T
18
Lucas-Kanade Algorithm
  1. Warp I with W(xp) ? I(W(xp))
  2. Compute error image T(x) - I(W(xp))
  3. Warp gradient of I to compute ?I
  4. Evaluate Jacobian
  5. Compute Hessian
  6. Compute ?p
  7. Update parameters p ? p ?p

-

?
19
Fast Gradient Descent?
  • To reduce Hessian computation
  • Make Jacobian simple (or constant)
  • Avoid computing gradients on I

20
Shum-Szeliski Image Aligment
  • Additive Image Alignment Lucas, Kanade

W(x0 ?p) W(x?p)
21
Compositional Image Alignment
  • Minimise,

Jacobian is constant, evaluated at (x, 0) ?
simple.
22
Compositional Algorithm
  1. Warp I with W(xp) ? I(W(xp))
  2. Compute error image T(x) - I(W(xp))
  3. Warp gradient of I to compute ?I
  4. Evaluate Jacobian
  5. Compute Hessian
  6. Compute ?p
  7. Update W(xp) ? W(xp) o W(x?p)

-

?
23
Inverse Compositional
  • Why compute updates on I?
  • Can we reverse the roles of the images?
  • Yes!
  • Baker, Matthews CMU-RI-TR-01-03 Proof that
    algorithms take the same steps (to first order)

24
Inverse Compositional
  • Forwards compositional
  • Inverse compositional

25
Inverse Compositional
  • Minimise,
  • Solution
  • Update

?
26
Inverse Compositional
  • Jacobian is constant - evaluated at (x, 0)
  • Gradient of template is constant
  • Hessian is constant
  • Can pre-compute everything but error image!

27
Inverse Compositional Algorithm
  1. Warp I with W(xp) ? I(W(xp))
  2. Compute error image T(x) - I(W(xp))
  3. Warp gradient of I to compute ?I
  4. Evaluate Jacobian
  5. Compute Hessian
  6. Compute ?p
  7. Update W(xp) ? W(xp) o W(x?p)-1

-

?
28
Framework
  • Baker and Matthews 2003
  • Formulated framework, proved equivalence

Algorithm Can be applied to Efficient? Authors
Forwards Additive Any No Lucas, Kanade
Forwards Compositional Any semi-group No Shum, Szeliski
Inverse Compositional Any group Yes Baker, Matthews
Inverse Additive Simple linear 2D Yes Hager, Belhumeur
29
Example
Write a Comment
User Comments (0)
About PowerShow.com