Title: Lucas-Kanade Image Alignment
1Lucas-Kanade Image Alignment
2Paper Reading
- Simon Baker and Iain Matthews,
- Lucas-Kanade 20 years on A Unifying Framework,
Part 1 - http//www.ri.cmu.edu/pub_files/pub3/baker_simon_2
002_3/baker_simon_2002_3.pdf - And Project 3 Description
3Recall - Image Processing Lecture
- Some operations preserve the range but change the
domain of f - What kinds of operations can this perform?
- Still other operations operate on both the domain
and the range of f .
4Face Morphing
5(No Transcript)
6(No Transcript)
7Applications of Image Alignment
- Ubiquitous computer vision technique
- Mosaicing
- Tracking
- Parametric and layered motion estimation
- Image registration and alignment
- Face coding / parameterization
- Super-resolution
8Generative Model for an Image
shape
Parameters
Image
appearance
9Fitting a Model to an Image
- What are the best model parameters to match an
image?
shape
Parameters
Image
appearance
- Nonlinear optimization problem
10Active Appearance Model
- Cootes, Edwards, Taylor, 1998
11Image Alignment
12Want to Minimize the Error
- Warp image to get compute
13How to Minimize the Error
- Minimise SSD with respect to p,
Generally a nonlinear optimisation problem ?
14Linearize
- Taylor series expansion, linearize function f
about x0
15Gradient Descent Solution
- Least squares problem, solve for ?p
16Gradient Images
W(xp)
W(xp)
I(W(xp))
17Jacobian
- Compute Jacobian
- Mesh parameterization
4
1
4
1
Warp, W(xp)
Template, T(x)
Image, I(x)
3
2
3
2
Image coordinates x (x, y)T
Warp parameters, p (p1, p2, , pn)T (dx1,
dy1, , dxn, dyn)T
18Lucas-Kanade Algorithm
- Warp I with W(xp) ? I(W(xp))
- Compute error image T(x) - I(W(xp))
- Warp gradient of I to compute ?I
- Evaluate Jacobian
- Compute Hessian
- Compute ?p
- Update parameters p ? p ?p
-
?
19Fast Gradient Descent?
- To reduce Hessian computation
- Make Jacobian simple (or constant)
- Avoid computing gradients on I
20Shum-Szeliski Image Aligment
- Additive Image Alignment Lucas, Kanade
W(x0 ?p) W(x?p)
21Compositional Image Alignment
Jacobian is constant, evaluated at (x, 0) ?
simple.
22Compositional Algorithm
- Warp I with W(xp) ? I(W(xp))
- Compute error image T(x) - I(W(xp))
- Warp gradient of I to compute ?I
- Evaluate Jacobian
- Compute Hessian
- Compute ?p
- Update W(xp) ? W(xp) o W(x?p)
-
?
23Inverse Compositional
- Why compute updates on I?
- Can we reverse the roles of the images?
- Yes!
- Baker, Matthews CMU-RI-TR-01-03 Proof that
algorithms take the same steps (to first order)
24Inverse Compositional
25Inverse Compositional
- Minimise,
- Solution
- Update
?
26Inverse Compositional
- Jacobian is constant - evaluated at (x, 0)
- Gradient of template is constant
- Hessian is constant
- Can pre-compute everything but error image!
27Inverse Compositional Algorithm
- Warp I with W(xp) ? I(W(xp))
- Compute error image T(x) - I(W(xp))
- Warp gradient of I to compute ?I
- Evaluate Jacobian
- Compute Hessian
- Compute ?p
- Update W(xp) ? W(xp) o W(x?p)-1
-
?
28Framework
- Baker and Matthews 2003
- Formulated framework, proved equivalence
Algorithm Can be applied to Efficient? Authors
Forwards Additive Any No Lucas, Kanade
Forwards Compositional Any semi-group No Shum, Szeliski
Inverse Compositional Any group Yes Baker, Matthews
Inverse Additive Simple linear 2D Yes Hager, Belhumeur
29Example