Image Transforms - PowerPoint PPT Presentation

About This Presentation
Title:

Image Transforms

Description:

Image Transforms Basic idea Input Image, I(x,y) (spatial domain) Mathematical Transformation F( ) Transformed Image F(u, v) Processing F(u,v) Inverse Transformation – PowerPoint PPT presentation

Number of Views:259
Avg rating:3.0/5.0
Slides: 49
Provided by: Jian59
Category:

less

Transcript and Presenter's Notes

Title: Image Transforms


1
Image Transforms
  • Basic idea

Input Image, I(x,y) (spatial domain)
Mathematical Transformation F( )
Transformed Image F(u, v)
Processing F(u,v)
Inverse Transformation F-1( )
Output Image, I(x,y) (spatial domain)
2
Image Transforms
  • Fourier Transform
  • There are many different transformations, Fourier
    Transform (FT) or its fast implementation (FFT)
    is the most well-known.
  • For the purpose of this course, we will treat FFT
    as a black box, and will not go through the
    detail mathematics (i.e., not required).
  • Instead of formal mathematics, which will be more
    elegant, we will try to explain the essential
    idea of FFT informally.

3
Image Transforms
  • Fourier Transform Essential idea
  • Any given function (an image is a 2D function)
    can be approximated by a weighted sum of sines
    and conses.

4
Image Transforms
  • Fourier Transform
  • Basic idea

4
5
Image Transforms
f(t)
Cos(2?t)
f(t)
f(t) Cos(?t/2)Cos(?t)Cos(2?t)
Cos(?t)
Cos(?t/2)
6
Image Transforms
f(t)
  • In general,
  • The weight, Fi, indicates the importance of
    cos(uit)
  • ui represents the frequency of the cosine signal
  • A larger ui, cos(uit) changes faster -gt higher
    frequency component of f(t)
  • A smaller ui, cos(uit) changes slower -gt lower
    frequency component of f(t)

7
Image Transforms
f(t)
Cos(2?t)
f(t) Cos(?t/2)Cos(?t)Cos(2?t) F1 1 u1
?/2 F2 1 u2 ? F3 1 u3 2?
Cos(?t)
Cos(?t/2)
8
Image Transforms
f(t)
Cos(2?t)
f(t) 5Cos(?t/2)2Cos(?t)Cos(2?t) F1
5 u1 ?/2 F2 2 u2 ? F3 1 u3 2?
Cos(?t)
Cos(?t/2)
9
Image Transforms
f(t)
Cos(2?t)
f(t) Cos(?t/2)2Cos(?t)5Cos(2?t) F1
1 u1 ?/2 F2 2 u2 ? F3 5 u3 2?
Cos(?t)
Cos(?t/2)
10
Image Transforms
f(t)
F1 1 u1 ?/2 F2 2 u2 ? F3 5 u3 2?
F1 5 u1 ?/2 F2 2 u2 ? F3 1 u3 2?
F1 1 u1 ?/2 F2 1 u2 ? F3 1 u3 2?
f(t) F1Cos(?t/2)F3Cos(?t)F3Cos(2?t)
11
Image Transforms
f(t)
F1 1 u1 ?/2 F2 2 u2 ? F3 5 u3 2?
F1 5 u1 ?/2 F2 2 u2 ? F3 1 u3 2?
F1 1 u1 ?/2 F2 1 u2 ? F3 1 u3 2?
f(t) F1Cos(?t/2)F3Cos(?t)F3Cos(2?t)
12
Image Transforms
f(t)
F1 1 u1 ?/2 F2 2 u2 ? F3 5 u3 2?
F1 5 u1 ?/2 F2 2 u2 ? F3 1 u3 2?
F1 1 u1 ?/2 F2 1 u2 ? F3 1 u3 2?
Power spectrum or Frequency Distribution
f(t) F1Cos(?t/2)F3Cos(?t)F3Cos(2?t)
13
Image Transforms
f(t)
F1 1 u1 ?/2 F2 2 u2 ? F3 5 u3 2?
F1 5 u1 ?/2 F2 2 u2 ? F3 1 u3 2?
F1 1 u1 ?/2 F2 1 u2 ? F3 1 u3 2?
What can we tell about the function (image) from
its frequency distribution?
f(t) F1Cos(?t/2)F3Cos(?t)F3Cos(2?t)
14
Image Transforms
f(t)
  • Fourier Transform so far our informal
    illustration

f(t)
FFT
F(u)
FFT
15
Image Transforms
f(t)
  • Fourier Transform Actual

A continuous function rather than discrete
f(t)
FFT
F(u)
F(u)
FFT
u
16
Image Transforms
f(t)
  • Fourier Transform Actual

F(u)
u
Similar to the discrete case, from F(u), we can
tell something about the signal f(t)
F(u)
u
17
Image Transforms
f(t)
  • Fourier Transform To summaries
  • From F(u), we can tell something about its
    spatial signal, whether it contains fast/slow
    changing features

f(t)
FFT
F(u)
F(u)
FFT
18
Image Transforms
  • Now, come back to the idea of frequency domain
    processing
  • F( )

Input Image, I(x,y) (spatial domain)
Mathematical Transformation F( )
Transformed Image F(u, v)
F
Processing F(u,v)
Inverse Transformation F( )
Output Image, I(x,y) (spatial domain)
19
Image Transforms
  • Now, come back to the idea of frequency domain
    processing
  • F( )

To achieve smoothing, low-pass filtering, we
attenuate the higher frequency part of F(u)
Input Image, I(x,y) (spatial domain)
Mathematical Transformation F( )
Transformed Image F(u, v)
F
Processing F(u,v)
Inverse Transformation F( )
Output Image, I(x,y) (spatial domain)
20
Image Transforms
  • Now, come back to the idea of frequency domain
    processing
  • F( )

To achieve sharpening, low-pass filtering, we
attenuate the lower frequency part of F(u)
Input Image, I(x,y) (spatial domain)
Mathematical Transformation F( )
Transformed Image F(u, v)
F
Processing F(u,v)
Inverse Transformation F( )
Output Image, I(x,y) (spatial domain)
21
Image Transforms
  • Band limiting signals A signals Fourier
    transform equal to zero above a certain finite
    frequency
  • All images (natural signals) are band limiting
    signals

F(u)
22
Frequency Domain Processing
im
  • In practice
  • Matlab
  • f2fft2(im)
  • f2fftshift(f2)
  • fabs2FH_abs(f2)
  • (calculate magnitude,
  • FFT are complex number)
  • imshow(fabs2)

23
Frequency Domain Processing
  • Another
  • example

24
Convolution and Spatial Filtering
  • Spatial filtering is the convolution between the
    input image and the filtering mask

f(x,y)
w(x,y)
f(x,y)w(x,y)
25
Frequency Domain Processing
  • The foundation of frequency domain techniques is
    the convolution theorem

26
Frequency Domain Processing
H(u, v) is called the transfer function
27
Frequency Domain Processing
  • Typical lowpass filters and their transfer
    functions

28
Frequency Domain Processing
  • Typical lowpass filters and their transfer
    functions

29
Frequency Domain Processing
  • Example

30
Frequency Domain Processing
  • Example

31
Frequency Domain Processing
  • Typical lowpass filters and their transfer
    functions

32
Frequency Domain Processing
  • Example

33
Frequency Domain Processing
  • Typical lowpass filters and their transfer
    functions

34
Frequency Domain Processing
  • Example

35
Frequency Domain Processing
  • Example

36
Frequency Domain Processing
  • Example

37
Frequency Domain Processing
  • Typical highpass filters and their transfer
    functions

38
Frequency Domain Processing
  • Typical highpass filters and their transfer
    functions

39
Frequency Domain Processing
  • Typical highpass filters and their transfer
    functions

40
Frequency Domain Processing
  • Examples

41
Frequency Domain Processing
  • Examples

42
Frequency Domain Processing
  • Examples

43
Frequency Domain Processing
  • More examples

44
Frequency Domain Processing
  • Examples

45
Frequency Domain Processing
  • Examples

46
Frequency Domain Processing
  • Spatial vs frequency domain

47
Frequency Domain Processing
  • Spatial vs frequency domain

48
Frequency Domain Processing
  • Examples
Write a Comment
User Comments (0)
About PowerShow.com