?????? ??(Option) - ????? ????- - PowerPoint PPT Presentation

1 / 100
About This Presentation
Title:

?????? ??(Option) - ????? ????-

Description:

Title: PowerPoint Author: John Shin (johnshin_at_kfb.co.kr) Last modified by: John Shin Created Date: 11/24/2001 6:29:00 AM Document presentation format – PowerPoint PPT presentation

Number of Views:176
Avg rating:3.0/5.0
Slides: 101
Provided by: JohnShin3
Category:

less

Transcript and Presenter's Notes

Title: ?????? ??(Option) - ????? ????-


1
?????? ??(Option)- ????? ????-
  • ???? ??? ??
  • ? ? ? (johnshin_at_kfb.co.kr)

2
Prologue
  • ? Forwards, futures, ? FX swaps? ?? ??? ???
    ???????.
  • ? ???? ??? ?? ?? ??? ????? ?? ????? ???? ????.
  • 1?, 2? ???? ??? ????? 02? 8? 15? ??? ???????.
  • ???? URL http//vols.com.ne.kr/fxkorea.html
  • ????? ????. - ??? ?-

3
????(Currency Options)
4
Introductions to Option
  • Option Market
  • ?? ??? ??? ??? ?? ??? ??? ?? ?? ??? ? ?? ??? ??
  • ???? ???? ??? ??/??/??/????? ?? ??? ?? ??? ???.
  • ?? ????(holder, long) ? ??? ??? ??, ????
    (writer, short)??? ???.

5
Introductions to Option (Contd)
  • Plain Vanilla Option? Risk Profile

6
Introductions to Option (Contd)
  • Glossary
  • Call Options Give the holder (buyer) the right,
    but not the obligation, to BUY the underlying
    asset from the writer (seller) by a given time at
    a given price
  • Put Options Give the holder the right, but not
    the obligation, to SELL the underlying asset to
    the writer by a given time at a given price
  • Maturity The given time is called the
    Expiration or Maturity date
  • Strike The given price is called the Strike
    or Exercise price
  • European An option that can be exercised only
    at the end of its life
  • American An option that can be exercised at
    any time during its life.
  • Premium Option contract is a kind of financial
    assets, and its price movement depends on its
    undelying assets.Therefore, premium is the price
    of financial assets.That is, the price paid by
    the buyer of the options
  • Option Value Intrinsic Value Time Value
  • 1)Intrinsic Value Profit an Option Holder would
    make from exercising the option immediately,
    i.e., Difference Between Exercise Price and Price
    of the Underlying
  • 2)Time Value Value of Being able to Postpone
    Decision to Exercise. This is, the expected
    increase in the options intrinsic value in the
    remaining life of the option.

7
Introductions to Option (Contd)
  • Why Option?
  • ???? ?? ????? ??
  • ????? ?? ??????
  • ?? ???? ?? ??
  • ?????? ????? ????
  • ?? vs. ??? Flexibility
  • The forward contract exactly matches the existing
    FX position There is neither risk of loss nor
    potential for gain. The option locks in the
    worst case at the premium paid and leaves the
    option holder with a potential unlimited gain in
    case of favorable spot moves.

8
CASE1 ????? ??? Hedge
  • S??? ?????? 3??? ??? U?? ????? ?? ????? Hedge???
    ??, ??? U/Won??? ??? ?? ???? ??? ???? ???? ??
    ??? ??? ????? ???? ??. ???? ?? ??(Won??)? ????
    ????? ?? ??? ?? ??? ??? ? ?? Hedge ??? ?????
  • ? ?? ?? Hedge? ??? ?? Risk Profile??

9
CASE1 ????? ??? Hedge (Contd)
  • Buy U-Call (Won-Put) Option

10
CASE2 ??? ????? Hedge
  • D ??? ????? ??? ??? ???? ??? ??? ????? ??. ?????
    ????? 1??? ?? FFR? ???? D ??? ???? ??? ??? 50
    ????. ??? Margin? ???? ??? ????? Hedge??? ???
    ??? ??? bidding process? ?? 3??? ???.
  • D ?? ???? ????? Hedge? ?? ?? ????? ?? ?????
    Hedge? ???? ???? ??? ?? ???? ?? ????? ?? ?? ????.
  • D ??? ??? ??? ??? ????? ????? Hedge? ?????
  • ?? ??? ???? ????? Hedge? ? ?? ????

11
CASE2 ??? ????? Hedge (Contd)
  • ??? Hedge? ???
  • 50? ????? ?? ????? 50 ??? Hedge? ?????? ???,
  • ??? ??? ?? ?? ??? ??? ?? 0
  • ?? 100? ??? ?? (???? Hedge??? ?? ??)
  • ????? ?? Hedge
  • U-Call(Ffr-Put) Option

12
CASE3 Zero-cost Options
  • Zero-cost Options
  • ??? ??? ??? ???? Hedge
  • ??? ??? Premium? ??
  • ??? ??? ??/?????? Zero-premium ??? ?? ??
  • ????? ?? ?? Premium ????? ?? ?? Premium
  • ??? ????? ??? ??? Risk Profile? ??? ? ??
    Flexibility? ??
  • --gt ?? ???? Financial Engineering Tool

13
Introductions to Option (Contd)
  • Option? ??
  • Option Value ???? (Time Value) ???? (
    Intrinsic Value)
  • Value of (Call) Option at Maturity C max ( S
    - X, 0 )

14
Introductions to Option (Contd)
  • Intrinsic Value(????)
  • ????(S-X)? ????? ?????? ????.
  • ????? ????? 0? ??? ??.

15
Introductions to Option (Contd)
  • Time Value(????)
  • ????? ?????? ????? ? ????.
  • ?, Time value Option Value-Intrinsic Value.
    ????? ??? ???? ???? ??? ?? Premium? ???? ???.
    ????? ATM?? ??? ??.
  • ?? ?? 1?? 800? ?? 2,000?? ? ????

16
Introductions to Option (Contd)
  • Option?? ????
  • Spot price (S)
  • Strike price (X)
  • Time to expiration ( Maturity, say 182days...)
  • Volatility of underlying (?)
  • Risk-free interest rate (r, rf)
  • For USD/KRW, r KRW, rf USD
  • Option?? ????? ????
  • CALL PUT
  • ???? (S) -
  • ???? (X) -
  • Volatility (?)
  • Interest Rate (r) /-
  • Time to Mature (T)

17
Volatility
  • Volatility? ??
  • High volatility means you have higher
    change(probability) to win the option at the
    maturity, so, other things being equal, the
    premium also much expensive.

18
Volatility (Contd)
  • High volatility equals high premium but nobody
    can calculate the future volatility
  • Types of volatilities
  • Futures volatility
  • Historical volatility
  • Implied volatility
  • Volatility smile
  • Risk Reversal
  • Volatility smile is not always uniform in both
    directions.
  • To reflect the preference for upside or downside
    protection

??
??
??
Historical Vol.
Implied Vol.
Futures Vol.
19
Volatility (Contd)
  • Volatility smile
  • The Black Scholes model used to price options
    assumes that future spot rates are lognormally
    distributed around the forward rate (A variable
    with a lognormal distribution has the property
    that its natural logarithm is normally
    distributed). In reality, extreme outcomes are
    more likely than the lognormal distribution
    suggests - The BS model underestimates the
    probability of strong directional spot movements
    and therefore undervalues options with low deltas
  • 1st Adjustment Traders routinely compensate for
    these differences by adjusting the
    at-the-money-forward vols for out-of-the-money
    strikes to more accurately reflect the perceived
    risk The manner in which traders adjust the
    at-the-money volatilities gives rise to the
    characteristic smile of the vol curve - This is
    called the Smile Effect
  • For example, if the actual distribution shows
    fatter tails than that suggested by the lognormal
    distribution (what is termed excess kurtosis),
    low delta options will have been underpriced
    using BS
  • Traders compensate for this by adding a spread
    above the ATMF vols to both the low and high
    strike options

20
Volatility (Contd)
  • Volatility smile (Contd)
  • 2nd Adjustment Also, the BS model does not
    take into account any market trends.
  • Accordingly, option traders have to adjust their
    vol prices such that strikes lying in the trend
    will be more expensive than the strikes
    symmetrical to them compared to the outright.
  • In theory, all strikes should trade at the same
    vol since they are all based on the same
    underlying instrument.
  • The adjustments which traders make to the ATMF
    vols in order to quote high strike or low strike
    options result in the characteristic smile
    profile.
  • Smile Effect in a neutral market
  • The market has a neutral bias towards higher or
    lower strikes
  • The price structure is symmetrical
  • Only extreme strikes are adjusted

21
Volatility (Contd)
  • Volatility smile (Contd)
  • Smile Effect in a bullish market
  • When high strike options are in demand, the
    implied volatilities need to be adjusted higher
  • The price structure is asymmetrical
  • The market favors higher strikes (OTM Calls)
  • Smile Effect in a bearish market
  • When low strike options are in demand, the
    implied volatilities need to be adjusted higher
  • The price structure is asymmetrical
  • The market favors lower strikes (OTM Puts)
  • Since the curve may be shaped like a lop-sided
    smile or a smirk or a frown, people have been
    using the term volatility skew instead of
    volatility smile because the term skew doesnt
    imply the sort of symmetry that the term
    smiledoes.
  • A smile curve can be defined for every
    maturity. We may have a rather neutral sentiment
    on the short term but a bullish view on the long
    term. Check the concept of volatility surface
    (strike x maturity x vol)

22
Volatility (Contd)
  • Risk Reversal
  • Now that it is clear how and why high strike and
    low strike vols differ from the ATMF vols, it
    becomes important to understand how this is
    measured or obtained in the market
  • The risk reversal is the volatility spread
    between the level of vol quoted in the market for
    a high strike option and the vol for a low strike
    option
  • Risk reversals are collars, where the bought
    option and the sold option have the same delta
  • As options with the same delta have the same
    sensitivity to the vol (or same vega), risk
    reversals are vega neutral
  • As a vega neutral structure, the vol spread will
    be more important than the actual vol level
  • R/R are quoted as vol spreads
  • They will also have to reflect an eventual
    asymmetry of the Smile Effect
  • The market convention is to quote the difference
    between 25 delta strikes, however any other delta
    may be priced
  • So, ignoring bid offer, if the vol of a 25 delta
    JPY put is 10.80, and if the vol of a 25 delta
    JPY call is 11.20, then the risk reversal would
    be quoted as 0.40, JPY calls over, indicating
    that JPY calls are favored over JPY puts (a
    skewness towards a large yen appreciation)

23
Volatility (Contd)
  • Risk Reversal (Contd)
  • Instead of quoting exercise prices directly, the
    convention in the options market is to quote
    prices for options with particular deltas. Like
    the practice of quoting implied volatilities, the
    rationale for this is to allow comparison of
    quotes without needing to take into account
    changes in the underlying price. When referring
    to the delta of options, market participants also
    drop the sign and the decimal point of the delta.
    So for example, an OTM put option with a BS
    delta of -0.25 is referred to as a 25-delta put.
  • A 25-delta risk reversal is obtained by buying a
    25-delta option and selling a 25-delta option in
    the opposite direction.
  • In this example, the OTM call more expensive than
    the equally OTM put (compared with what would be
    predicted by the BS model)

24
Volatility (Contd)
  • Risk Reversal (Contd)
  • R/R shows what direction the market is favoring.
  • R/R also gives an indication of the strength of
    the markets expectations.
  • R/R indicates the degree of skewness compared
    with the lognormal distribution, which itself is
    positively skewed.
  • Traders need to reach an agreement on the actual
    level of volatilities for the call and put when
    trading R/R.
  • To translate risk reversal quotes into actual
    vols, one requires information on strangles or
    butterflies.

25
Volatility (Contd)
  • Risk Reversal (Contd)
  • A 25 delta strangle is obtained by buying (or
    selling) a 25 delta call and a 25 delta put.
  • Strangles are quoted in absolute volatility terms
    as the average of call and put volatilities
    (often expressed as a spread over ATMF vol).
  • A long 25 delta butterfly is the combination of a
    short ATMF straddle and a long 25 delta strangle.
  • Butterflies are quoted as a spread between the
    strangles and the straddles.
  • Observing both the risk reversal and the strangle
    (or the butterfly) allows the calculation of two
    separate volatilities for the call and put.
  • For example, from the following mid-market
    information,
  • ATMF vol 10.0
  • Butterfly (or Strangle quoted as a spread over
    ATMF vol) 0.6
  • R/R 1.0 call over
  • Then Strangle 10.0 0.6 10.6, Vol for the
    call 10.6 1.0 / 2 11.1, Vol for the put
    10.6 1.0 / 2 10.1

26
Volatility (Contd)
  • Volatility Smile

27
Volatility (Contd)
  • Volatility Time value
  • An increase in volatility does not affect the
    intrinsic value of an option, but does have an
    interesting effect on the time value of an
    option.
  • The time value of a one-year European call with a
    strike of Y100 calculated for a range of spot
    prices at different volatility levels result in
    the above curve.
  • For any ATM option, an increase in volatility
    will proportionately increase its time value

28
Volatility (Contd)
  • Volatility Quotation

29
Volatility (Contd)
  • Historical Volatility ???
  • ??? ???? ??? ????? ???? (Natural Log, Ln)? ????
    ?? ? ? ?? ?? ????? ??? ?.
  • Monthly Volatility (Daily Data ?? ?)
  • Ln(St/St-1)(?? 21??? ????) ?252
  • Monthly Volatility (Weekly Data ?? ?)
  • Ln(St/St-1)(?? 4??? ????) ?52
  • 1year 12??, 1year 52?, 1year 252?

30
Volatility (Contd)
  • Historical Volatility ???(Contd)

LN(B4/B3)
STDEV(C4C8)SQRT(252)
STDEV(C4C24)SQRT(252)
31
Volatility (Contd)
32
Option Valuation by Binomial Trees
  • Theoretical Option Value
  • Sum of Expected Values Sum of probability
    expected price change
  • Binomial P/L

33
Option Valuation by Binomial Trees (Contd)
  • Binomial Tree
  • The binomial tree displays an assets potential
    price outcomes and the probability of occurrence
    associated with each specific time intervals.
  • Assumption There is 5050 chance price will be
    moved by 1
  • Binomial Tree

34
Option Valuation by Binomial Trees (Contd)
  • Binomial Tree Option
  • The binomial tree is useful for visualizing how
    different variables affect options pricing
  • All values above(Below) the strike price line
    represent outcomes that would produce a payoff
    for a Call (Put)option
  • Buy U Call

35
Option Valuation by Binomial Trees (Contd)
  • Theoretical Value Sum of MAX(0,Si-K)
    Probability
  • (Y71/32)(Y55/32)(Y35/16)(Y15/16)(05/32
    )(0132) Y2.25
  • Given a time t1T European call option with a
    strike price of Y98,
  • the theoretical value of this call is Y2.25
  • Option Value

36
Option Valuation by Binomial Trees (Contd)
  • Concept of Binomial Option Valuation
    Method(No-arbitrage or Riskless hedge approach)
  • ??(?)? ?????(Short Call)?? ??? ?????(??-?? ???)?
    ????? ?? ??? ??.
  • ??? ?? ?? ??-?? ????? ???, ??? ?? ?? ??? ???.
  • ??? ???? r?? ???, ?????? ?????
    ?? S0? - f ??.

37
Option Valuation by Binomial Trees (Contd)
  • ???? ??? ????? ???(Risk neutral approach)
  • ?????? ???? ?? ??? p(?????? Risk neutral
    probability)? ??? ????? (1-p)? ??? ??? ??? ?????,
    ????? 1?? ?? ????? ??? ??.
  • ??, ??? ?? ?? ??? ??? ??? ????(?? E(x2)-
    E(x)2),
  • ??? ?? ??? ? ??.
  • ?? ??? ??? ??, ?? ?? ????? ??? ?? ??? ??? ??.

38
Option Valuation by Binomial Trees (Contd)
  • ???? ??? ????? ???(Risk neutral approach)
    (Contd)
  • ?? ??? ???, ?? ??? ??? ?? ??? ? ??.

39
Option Valuation by Binomial Trees (Contd)
  • ????? ???? ??
  • ??? ?? ????? ?????, ??? ??? r?? r-rf? ??? ????,
  • ??? ?? ??? ????.
  • ??? ????? ???, ??? ????? ????? ???? ????? ??? ?
    ??.
  • ?, ????? ????? Exp(-r?t)?? ???? ??.

40
Option Valuation by Binomial Trees (Contd)
  • ????? ??? ??? ? ?? ????
  • ??(So)1,230
  • ????(X)1,230
  • ????(r)5
  • ????(rf)2
  • ???8
  • ??3??(0.25)
  • ????(N)5 (?t0.05)
  • ????0.9975
  • ????(a)1.0015
  • ????(p)0.5375
  • u1.0180
  • d0.9823
  • ?? ?) 92.99115.080.53750.997567.81(1-0.5375)
    0.9975

41
Option Valuation by Binomial Trees (Contd)
  • Currency Option Pricing Application with Visual
    Basic Code
  • ?? ?????? ??????? Binomial Tree? ??? ???? ????

Function Binomial_European(S, X, Sday, Mday, Vol,
r, rf, Call_Put, N) Dim St(0 To 200, 0 To
200) As Double Dim optlet_price(0 To 200, 0
To 200) As Double tau (Mday - Sday) / 365
dt tau / N u Exp(Vol Sqr(dt)) d
1 / u a Exp((r - rf) dt) b Exp(-r
dt) P (a - d) / (u - d) For i 0 To N
For j 0 To i St(i, j) S
u j d (i - j) Next j Next i
For j 0 To N If (Call_Put "Call")
Then optlet_price(N, j)
Application.WorksheetFunction.Max(St(N, j) - X,
0) Else optlet_price(N, j)
Application.WorksheetFunction.Max(X - St(N, j),
0) End If Next j For i N - 1 To
0 Step -1 For j 0 To i
optlet_price(i, j) (P optlet_price(i 1, j
1) (1 - P) optlet_price(i 1, j)) b
Next j Next i Binomial_European
optlet_price(0, 0) End Function
42
Option Valuation by Binomial Trees (Contd)
  • Currency Option Pricing Application with Visual
    Basic Code (Contd)
  • ?? ?????? ??????? Binomial Tree? ??? ???? ????

Function Binomial_American(S, X, Sday, Mday, Vol,
r, rf, Call_Put, N) Dim St(0 To 200, 0 To
200) As Double Dim optlet_price(0 To 200, 0
To 200) As Double tau (Mday - Sday) / 365
dt tau / N u Exp(Vol Sqr(dt)) d
1 / u a Exp((r - rf) dt) b
Exp(-r dt) P (a - d) / (u - d) For i
0 To N For j 0 To i St(i,
j) S u j d (i - j) Next j
Next i For j 0 To N If (Call_Put
"Call") Then optlet_price(N, j)
Application.WorksheetFunction.Max(St(N, j) - X,
0) Else optlet_price(N, j)
Application.WorksheetFunction.Max(X - St(N, j),
0) End If Next j For i N - 1 To
0 Step -1 For j 0 To i
optlet_price(i, j) (P optlet_price(i 1, j
1) (1 - P) optlet_price(i 1, j)) b
If (Call_Put "Call") Then
optlet_price(i, j) Application.WorksheetF
unction.Max(St(i, j) - X, optlet_price(i, j))
Else optlet_price(i, j)
Application.WorksheetFunction.Max(X - St(i, j),
optlet_price(i, j)) End If
Next j Next i Binomial_American
optlet_price(0, 0) End Function
43
Financial Variables Movement
  • Markov Property
  • ???? ???? ??? ??? ?? ??? ?, ?? Stochastic
    Process? ???? ??.
  • Markov Process? Stochastic Process? ? ???, ??? ??
    ???? ???? ??? ??? ?? ????? ??? ?? ???.
  • Wiener Process( Brownian Motion)
  • Markov Process ? ??? 0??, ??? 1? ?? Wiener
    Process ?? Brownian Motion?? ??.
  • ?? z? Wiener Process? ?? ?, ?t ??? ??? ??? ??.
  • Mean of ?z 0
  • St. dev. of ?z sqrt(?t)
  • Generalized Wiener Process
  • Mean of ?x a?t
  • St. dev. of ?x bsqrt(?t)

44
Financial Variables Movement (Contd)
  • Process of Stock Price
  • ??? ?? ??(?t)? ??? ???(?S)? ?????(?)? ??(?t)? ?
    ????,
  • ??(?t)? 0? ????? ??? ?, ?? ?? ????.
  • ???, ??(S)? ?? ???? ?? ??? ?, ??? ?? ?? ????.

45
Financial Variables Movement (Contd)
  • ?? Simulations

46
Financial Variables Movement (Contd)
  • ?? Simulations (Contd)

47
Financial Variables Movement (Contd)
  • ?? Simulations (Contd)

48
Financial Variables Movement (Contd)
  • Ito Process
  • Generalized Wiener Process? ? ?? a, b? ???? x? ??
    t ? ?? ? ?, ?? Ito Process? ??, ??? ?? ?? ????.
  • Itos Lemma Option Price of Stock
  • ?? ?? ??? ????? ??? ??? ????.
  • Itos Lemma? ?? x, t? ??? f? ??? ?? ??? ???? ???.
  • ?? f ?? Ito Process? ???,
  • Drift(?? ????)?
  • ???

49
Financial Variables Movement (Contd)
  • Itos Lemma Option Price of Stock (Contd)
  • ?? ?
    ???????, ??(S)? ??(t)? ??? f? ?? ?? ?? ??? ???.
  • Itos Lemma ? ??
  • flnS?? ? ?, ?f/ ?S1S, ?2f/ ?S2-1/S2, ?f/
    ?t0??.
  • ???,
    ? ????.
  • ?, ??? (?-?2/2)T, ??? ?2T? ????? ??? ??.

50
Black-Scholes Model
  • Lognormal Property of Stock price
  • ??? Lognormal??? ???, Geometric Brownian Motion?
    ???,
  • ???, lnS ?? GBM? ??? ???, lnS? ????? ??? ?? ??
    ????.

51
Black-Scholes Model (Contd)
  • ?????(Distribution of Rate of Return)
  • ?? ???? T????? ???? ?????? ? ?,
  • ?, ???? ??? (?-?2/2)??, ????? ?/?T ? ????? ???.

52
Black-Scholes Model (Contd)
  • Black-Scholes-Merton ?? ??? ??


  • ? ?????,


  • ?? ????.
  • ?f/ ?S ??? ??? (-)? ?????? ??? ?????? ??? ??
  • ?????? ???
  • ??? ?? ?? ?t??? ????? ????(??)? ??? ??.
  • ??? ?? ?? ??? ????? ???? (??) ? r??t? ????,

  • ?
    ??? ????.

53
Black-Scholes Model (Contd)
  • Black-Scholes? ??

54
Proof of Black-Scholes Model
  • Key Result
  • Key Result? ??
  • ??, ??? ?? ????,
  • H(Q)? Q? ?? ?????? ? ?,

55
Proof of Black-Scholes Model (Contd)
  • Key Result? ?? (Contd)

56
Currency Options by Black-Scholes Model
  • Black-Scholes ?????? ??
  • ?? ?? ??? ?? GBM? ???, ??-??????, ??? ?? ?? ????.
  • ??? ???? ??(q)? ?? ??? ?????, S0 ?? S0 Exp(-qT)
    ?? S0 Exp(-rfT)? ??? ?? ????.(??/? ??? ?? rf?
    ??? ??)
  • ??, Black-Scholes? ??? ?? ?? ?????, ???? ???
    ???? ???? ????.

57
Currency Options by Black-Scholes Model (Contd)
  • Put-Call Parity
  • ??? ???? ? ????? ??? ?? ??? ????.

58
Currency Options by Black-Scholes Model (Contd)
  • Currency Option Pricing Application with Visual
    Basic Code
  • ?? ?????? ??????? Black-Scholes ???? ????

Function EC(S, X, Sday, Mday, vol, r, rf) As
Double Dim t As Double Dim d1 As Double
Dim d2 As Double t (Mday - Sday) /
365 d1 (Log(S / X) (r - rf vol 2 / 2)
t) / (vol t 0.5) d2 d1 - vol t
0.5 EC Exp(-rf t) S
Application.NormSDist(d1) - Exp(-r t) X
Application.NormSDist(d2) End Function Function
EP(S, X, Sday, Mday, vol, r, rf) As Double
Dim t As Double Dim d1 As Double Dim d2
As Double t (Mday - Sday) / 365 d1
(Log(S / X) (r - rf vol 2 / 2) t) /
(vol t 0.5) d2 d1 - vol t 0.5
EP Exp(-r t) X Application.NormSDist(-d
2) - Exp(-rf t) S Application.NormSDist(-d1)
End Function
59
Option Sensitivity (Delta)
  • ????
  • ??? ITM?? ?? ???
  • ????
  • ???? ????? ?? ???
  • ATM??? ??? 0.50
  • ????
  • ??? ??? ??? ??? ???? ??? ???? ???? ??? ??? ?????
    ?????? ???? ??? ? ??.
  • Dynamic Hedging
  • ??? ??,??,Volatility ?? ??? ?? ??? ??? ??? ???
    ??? ??.
  • ???? ????
  • ???? ???? ?? ???? ?????? ? ??? ?????, ???? ??? ??
    ?????? carrying cost??? ?? risk? ??? ?.

60
Option Sensitivity (Delta Contd)
  • ??(Delta)
  • ?? ???? ???? ????,
    ? ????.
  • ??(?)? ???? ????? ?? ???? ????.
    ? ????? ?????.
  • ??? ??? ??
  • Black-Scholes ?? ?????? ??,
  • ????? ??
  • ????????? ????? r?? r-rf? ???? ??? ??.

61
Option Sensitivity (Delta Contd)
  • ????(S) ????? ?? ??? ??
  • ?????(Delta Neutral)? ????(Dynamic Delta Hedging)
  • ?????? ?? ???? ???? ????? ??? ?????? ???, ????
    ??? 0.6? ?? 0.6??? ????? ???? ??? ???(0)??.
  • ???? ?? ? ??? ?? ? ??? ?? ?? ????? ??
    ???(Rebalancing)? ???? ??. ?? ?? ???? ?????? ??.

OTM
X
62
Option Sensitivity (Delta Contd)
  • Continuous delta hedging
  • ???? ?? ????? ??? ?? ?? ?? ??????? ??? ????.
  • ?? ???? ? ?????
  • ????(the gamma effect, convexity effects)
  • ?????? ??(change in perceived volatility)
  • time decay due solely to the passage of time
  • ???? ????? ?? ??
  • No transaction cost
  • no jumps
  • no shift in the volatility.

63
Option Sensitivity (Gamma)
  • Delta of delta
  • ??? ??? ?? ???? ???? ?????? ?????? ?? ??? ???.
  • Positive/Negative ??
  • ??? ???? ???????? ???? ??? ???? ???????? ???? ??
  • Positive ???? ? ??? ??? Negative ?? ????.
  • At the money?? ??? ???? ?.
  • ??? ??? ?? ?? ???? ??.
  • ?? ?? ???? ??? ???
  • ??
  • Put?? ??? () ??
  • ???? ?? (-??) (??)
  • ???? ?? (-??) - (??)
  • Put?? ??? (-) ??
  • ???? ?? (??) (-??)
  • ???? ?? (??) - (-??)

64
Option Sensitivity (Gamma Contd)
  • ??(Gamma)
  • ??? ???? ????? ?? ????? ????. ?,
  • ?? ??? ?? ???? ?? S?S? ? ? ????? C? C? ?? C?
    C? ??.
  • ?? C-C? ????? ??? ????, ?? ????? Convexity?
    ?? ????.

65
Option Sensitivity (Gamma Contd)
  • ??? ????? ??
  • ????? ??
  • ????? ??? ?? ??? ????, ?? ATM? ?? ??? ???????
    ????.
  • ?? Plain vanilla ????? Exotic(Digital)??? ?? ?
    ?? ????.
  • ?? ???(Gamma Neutral)
  • ?????? ????? ?????? ??? 0?? ??? ?? ???.
  • ???, ????? ???? ?? ??? 0??? ??????? ??? ?? ? ??,
    ?? ??? ???? ???? ????.
  • ??-?? ???(Delta-Gamma Neutral)??? ?? ???? ????
    ??? ??? ??? ??? ??? ????.

66
Option Sensitivity (Theta Vega)
  • ?? ???
  • ????? ?? ????? ??
  • ?????? ??? ????? ????? ?.
  • ?? ??? ??? ??? ??.
  • At the money?? ??? ???? ?.
  • At the money?? ????? ?? ??? ??(??)? ?? ?? ?? ???
    ???? ??? ?. ?? ???????? ??, at the money ?? ?????
    ?? ?? ???? ?? ????? ??? ?? ???? ???? ???? ??? ???
    ??..
  • ?????
  • Implied volatility??? ?? ????? ??
  • Historical volatility?? ???? ??? ??.
  • ?? ??? ??? ??? ??.
  • At the money?? ??? ???? ?. Deep out of money? ???
    ?? ???? ?? ??? ?? ?? ??? volatility? ??? ? ?????
    ? ??? ?? ???? at the money? ???? ??? ?? ?

67
Option Sensitivity (Theta)
  • ??(Theta)
  • ??? ??? ??? ?? ?? ??? ???? ???. ?,
  • ??? ???? ?? ????? ???? ??? Time Decay??? ??.
  • ??? ????? ??
  • ??? ??
  • ????? ????? ?? ????(-)??.
  • ATM? ?? Time decay? ?? ??.

68
Option Sensitivity (Vega)
  • ??(Vega)
  • ??? ???? ?? ????? ??? ???. ?,
  • ???? ?? ???? ?? ?? ???? ??.
  • ????? ????? ?????? ????? ??? ??.
  • ??? ????? ??

69
Option Sensitivity (Sensitivity Factor
Relationship)
  • ??, ??, ??? ??
  • Black-Scholes Merton? ??????? ??,
  • ????? ???? ??, ??? ?? ??? ????.
  • ?, ??? ?? ?()? ??, ??? ? ?(-)? ??.

70
Option Sensitivity (????? ??? ??)
  • ??? ??? ?? ?????.
  • ?? ?? ?? ??? ???.
  • Delta-gamma replication.
  • Volatility hedging
  • B/S ? ???? ??? volatility? ???? ??? ?? volatility
    ??? ?? ??? ??? ?? ???? ?? ??? B/S????? ?? ??.
  • ????? vs. ????
  • ?? ??? ???????? ?? ?? ??? ???? ?? ?, ?? ?? ???
    ???? ??? ????? ??? ??? ??? ?.

71
Option Sensitivity (Application)
  • Currency Option Pricing Application with Visual
    Basic Code
  • ?? ?????? ??????? Black-Scholes ????? Greek??

Function Delta_Call(S, X, Sday, Mday, vol, r, rf)
As Double Dim t As Double Dim d1 As
Double t (Mday - Sday) / 365 d1
(Log(S / X) (r - rf vol 2 / 2) t) / (vol
t 0.5) Delta_Call Exp(-rf t)
Application.NormSDist(d1) End Function Function
Delta_Put(S, X, Sday, Mday, vol, r, rf) As
Double Dim t As Double Dim d1 As Double
t (Mday - Sday) / 365 d1 (Log(S / X)
(r - rf vol 2 / 2) t) / (vol t 0.5)
Delta_Put Exp(-rf t) (Application.NormSDist(
d1) - 1) End Function Function Gamma(S, X, Sday,
Mday, vol, r, rf) Dim t As Double Dim d1
As Double Dim N1 As Double t (Mday -
Sday) / 365 d1 (Log(S / X) (r - rf vol
2 / 2) t) / (vol t 0.5) N1 (1 / (2
Application.Pi()) 0.5) Exp((-d1 2) / 2)
Gamma (N1 Exp(-r t)) / (S vol t
0.5) End Function
72
Option Sensitivity (Application Contd)
  • Currency Option Pricing Application with Visual
    Basic Code(Contd)
  • ?? ?????? ??????? Black-Scholes ????? Greek??

Function Vega(S, X, Sday, Mday, vol, r, rf)
Dim t As Double Dim d1 As Double Dim N1
As Double t (Mday - Sday) / 365 d1
(Log(S / X) (r - rf vol 2 / 2) t) / (vol
t 0.5) N1 (1 / (2 Application.Pi())
0.5) Exp((-d1 2) / 2) Vega S (t
0.5) N1 Exp(-rf t) End Function Function
Theta_Call(S, X, Sday, Mday, vol, r, rf) Dim
t As Double Dim d1 As Double Dim N1 As
Double Dim d2 As Double t (Mday - Sday)
/ 365 d1 (Log(S / X) (r - rf vol 2 /
2) t) / (vol t 0.5) d2 d1 - vol t
0.5 N1 (1 / (2 Application.Pi()) 0.5)
Exp((-d1 2) / 2) Theta_Call -(S N1
vol Exp(-rf t)) / (2 t 0.5) rf S
Application.NormSDist(d1) Exp(-rf t) - r X
Exp(-r t) Application.NormSDist(d2) End
Function Function Theta_Put(S, X, Sday, Mday,
vol, r, rf) Dim t As Double Dim d1 As
Double Dim d2 As Double Dim N1 As Double
t (Mday - Sday) / 365 d1 (Log(S / X)
(r - rf vol 2 / 2) t) / (vol t 0.5)
d2 d1 - vol t 0.5 N1 (1 / (2
Application.Pi()) 0.5) Exp((-d1 2) / 2)
Theta_Put -(S N1 vol Exp(-rf t)) / (2
t 0.5) - rf S Application.NormSDist(-d1)
Exp(-rf t) r X Exp(-r t)
Application.NormSDist(-d2) End Function
73
Option Valuation Sensitivity Practice
74
Exotic Options
  • Barrier Options
  • Barrier Options? Payoffs? ????? ???????
    ????(Hurdle Rate)? ?????? ?? ????.
  • Barrier Options? ?? Knock-In(K/I)?
    Knock-Out(K/O)?? ?? ? ???,
  • K/I? ????? ????? ??? ??? ???, K/O? ??? ???? ???.
  • Barrier Options? ??? ?? Plain Vanilla???? ?????
    ???? ??? ?? ?????, ??? ????? ? ??? ????? ???
    ????.

75
Exotic Options (Contd)
  • Barrier Options? ????(Down Barrier Call)
  • H lt X ? ??,
  • cdocdic???, cdoc-cdi
  • H gt X ? ??,

76
Exotic Options (Contd)
  • Barrier Options? ????(Up Barrier Call)
  • Hlt X ? ??, cuo0, cuic
  • Hgt X ? ??,

77
Exotic Options (Contd)
  • Barrier Options? ????(Down Barrier Put)
  • HltX? ??,
  • H gt X ? ??, pdo0, pdip
  • Barrier Options? ????(Up Barrier Put)
  • Hlt X ? ??,
  • Hgt X ? ??,

78
Exotic Options (Contd)
  • Binary Options(Digital Options)
  • Binary Options? ?? Payoffs? ?????.
  • ???? ?? Cash-or-nothing ???? Cash-or-nothing
    Call? ??,
  • Cash-or-nothing Put?
    ??.
  • ? ?? ??? Binary Options? Asset-or-nothing ??
    ????? ???? ??,
    ???? ??.

79
Exotic Options (Contd)
  • Non-standard American Options
  • Bermudan option? ???? American option? ?? ???
    ???? ???? ? ? ??.
  • ?? ?? ??? ????(Binomial Tree)? ????(Trinomial
    Tree)? ?? ?? ????.
  • Forward Start Options
  • Forward Start Options? ?? ?????? ???? ????.
  • ??? ATM Forward Start ?Options? ???
    ??.
  • ??? c? ??????? T2-T1??? ????
  • Compound Options
  • Compound Options? ??? ?? ????.
  • ???, Call on Call, Put on Call, Call on Put, Put
    on Put? ?? ? ??.
  • Chooser Options
  • Chooser Options? ???? ?? ??? ??? ? ?? ????.
  • ??? ??? Payoffs? max(c,p)??.

80
Exotic Options (Contd)
  • Chooser Options (Contd)
  • ?? Put-Call Parity? ?? ??? ? ?? ???.
  • ?? Chooser Options? ????? X? ???? ?????
    Xe-(r-rf)(T2-T1)? ???? ????.
  • Lookback Options
  • Lookback Options? Payoffs? ?? ????? ?? ?? ???? ??
    ????.
  • ??? ???? ??? ????? ????? ?????? ??? ????.
  • ??? ???? ??? ????? ????? ?????? ??? ????.
  • ?? Lookback Options? ??? ?? ? ?? ??.
  • Shout Options
  • Shout Options? ???? ????? ?????? ????? ??? ????,
    ??? ?? Payoff? ??? ? ??. Lookback Option? ??? ???
    ?? ???, ????? ??.

81
Exotic Options (Contd)
  • Asian Options
  • Asian Options? ?? Payoffs? ??????? ????? ???
    ????.
  • ???? ??? max(0,Savg.-X), ???? max(0,X-Savg.)
  • Asian Options? Plain Vanilla ???? ????.
  • Asian Options? ?? ??? ?????? ????? ????? ??? ???
    ? ?? ???.
  • ?, ???? ??? max(0,ST-Savg), ???? max(0,Savg.-ST)

82
Option Strategy 1. Hedging using Put Option
  • ?? Long???? Put??? ??? ??

83
Option Strategy 2. Hedging using Call Option
  • ?? Short???? Call??? ??? ??

84
Option Strategy 3. Covered Call Writing
  • ?? Long???? Call?? ??? ???? Put?? ??? ??

85
Option Strategy 4. Straddle
  • Long Straddle (Spot 1200)
  • Buy USD Call 1205 Buy USD Put at 1205
  • Expectation
  • ??? ??? ??? ?? ??? ?? ??? ??.
  • ??? ????? ???? ??? ?? ???? ??.
  • Strategy
  • Premium? ?? ???? ????? ?? ??.
  • Premium 75won
  • Payoff
  • Below 1165 Start gaining
  • 1165-1240 Loss Area (Max 75won)
  • Above 1240 Start gaining

86
Option Strategy 5. Strangle
  • Long Strangle (Spot 1200)
  • Buy USD Call 1230 Buy USD Put at 1170
  • Expectation
  • ????? ??? ??? ?? ??? ????
  • ?????? ??? ??? ??? ??? ?? ??.
  • Strategy
  • Straddle? ?? premium? ?? ?? ?? ??
  • Premium 55won
  • Payoff
  • Below1143 Start gaining
  • 11431255 Loss Area (Max loss 55won)
  • Above 1255 Start gaining

87
Option Strategy 6. Bull Call Spread
  • Bull Call (Spot 1200)
  • Buy USD Call at 1205 Sell USD Call at 1230
  • Expectation
  • ??? ??? ?? ????? ???? ??
  • Strategy
  • Premium? ????/ loss? ???/ profit? ?? ? ?.
  • Premium 11won
  • Payoff
  • Below 1205 Pay premium (36won)
  • 12051211 Loss (1211-1205(Strike))
  • 12111230 Profit (1230(Strike)-1211)
  • Above 1230 Receive Premium(24won)

88
Option Strategy 7. Risk Reversal
  • Risk Reversal
  • Buy USD call at 1242, sell USD put at 1180
  • Expectation
  • ??? ??/????? ?? 1150 1300? Range??.
  • Strategy
  • ???? ?? ?? ???/??? ?? ??.
  • Payoff
  • Below 1180 Start losing (Less loss than
    Forward)
  • 11801242 No impact (Saved hedging cost)
  • Above 1242 Start earning (less profit than
    Forward)

89
Option Strategy 8. Seagull
  • Seagull
  • Buy USD call at 1200, sell USD put at 1170,
    and sell USD call at 1230
  • Expectation
  • ? ??? ??? ??? ?????? ?????, ? ??? ????.
  • Strategy
  • ???? ??(11701230)??? Call? ??? ??,
  • ?????? ?? ??? ????? ??

90
Option Strategy 9. Range Forward
  • ?? Short???? Risk-Reversal ? ??? ??? ????

Buy U Call Option (X SH)
91
Option Strategy 10. Target Forward
  • ?? Long???? ?????? ??? ??? ?????
  • ??? ????? ?? ???? ???? ???? ??? ????, ??? ?????
    ??.
  • ????? ?? ???? ???? ??? ???? ??.
  • ?????

Buy U Put Option (X SH)
92
Option Strategy 11. Double Forward
  • ?? Long???? ?????? ??? ??? ?????
  • ??? ????? ?? ???? ???? ???? ??? ????, ??? ?????
    ??.
  • ????? ???? ?? ???? ??? ??? ???? ??? ? ??.
  • ?????

93
Option Strategy 12. Participating Forward
  • ?? Long???? ?????? ??? ??? ?????
  • ??? ??? ??? ?, ??? ??? ?? ??? ????, ??? ?? ??? ??
    ? ??.
  • ?????

94
Option Strategy 13. Forward Extra
  • ?? Long???? ?????? ??? ??? ?????
  • ??? ??? ??? ?, ??? ??? ?? ??? ????, ??? ?? ??? ??
    ? ??.
  • ????? 1,230?/U?? ? ?,
  • ????? 1,215?/U ??? ??, 1215?/U? ??? ??,
  • ????? 1,265?/U ??? ??, 1215?/U? ??? ??,
  • ??? ?? ??, ??? ??.

95
Option Strategy 14. Adjustable Forward I
  • ?? Long???? ?????? ??? ??? ?????
  • ??? ??? ??? ?, ??? ??? ?? ??? ????, ??? ?? ??? ??
    ? ??.
  • ????? 1,230?/U?? ? ?,
  • ????? 1,340?/U ??? ??, 1230?/U? ?? ??(1230?/U
    ??? ??),
  • ????? 1,340?/U ??? ??, 1270/U? ?? ??(1270?/U
    ??? ??),

96
Option Strategy 15. Adjustable Forward II
  • ?? Long???? ?????? ??? ??? ?????
  • ??? ??? ??? ?, ??? ??? ?? ??? ????, ??? ?? ??? ??
    ? ??.
  • ????? 1,230?/U?? ? ?,
  • ????? 1,295?/U ??? ??, 1260?/U? ?? ??(1260?/U
    ??? ??),
  • ????? 1,295?/U ??? ??, 1220/U? ?? ??(1220?/U
    ??? ??),

97
Option Strategy 16. Accrual Forward
  • ?? Long???? ?????? ??? ??? ?????
  • ??? ??? ??? ?, ??? ??? ?? ??? ????, ??? ?? ??? ??
    ? ??.
  • ????? 1,230?/U?? ? ?, ????? ???? ??
  • ??? ??? 1,235?/U ??? ??, ????? ?? 0.40?/U? ??.
  • ??, 1,270?/U? ???? ????,
  • ??? ??? 1,235?/U ??? ??, ????? ?? 0.40?/U? ??.

98
Option Strategy 17. Range Premium Betting
  • ??? ?? ??? ?????
  • ??? ??? ? ??? ??? ??? ??? ?,
  • ??? ??? ???? ????? ??? ? ??.
  • ????? 1,230?/U?? ? ?,
  • ????? 1,2101,240?/U ??? ?? ??, 11?/U? ??.
  • ????? 1,2101,240?/U ??? ??? ??, 9?/U? ??.

99
Option Strategy Excel Application
  • ?? ???? ??? ??? Option Strategy ??(Target Forward
    Sell)

100
Epilogue
  • QA ?
  • Other issues in Option markets?
  • Any issue of derivatives market including swap
    and credit derivatives ?
  • More Information
  • E-mail johnshin_at_kfb.co.kr
  • Call 02-3702-4412
  • Class presentation file other materials
    http//vols.com.ne.kr/fxkorea.html
Write a Comment
User Comments (0)
About PowerShow.com