Title: Screen-Camera Calibration Using Gray Codes
1Screen-Camera Calibration Using Gray Codes
Yannick Francken Chris Hermans Philippe Bekaert
- Hasselt University tUL IBBT
- Expertise Centre for Digital Media, Belgium
- firstname.lastname_at_uhasselt.be
2Goal
Geometric calibration of a camera w.r.t. a screen
3Motivation
- Vision based HCI
-
- 3D reconstruction
Chen et al., SPIE 2002
Gorodnichy et al., SPIE 2002
Francken et al., CVPR 2008
Nehab et al., CVPR 2008
4Related Work
Funk and Yang, CRV 2007
Bonfort et al., ACCV 2006
5Related Work
- Planar mirror
- Spherical mirror
- Corner reflections
?
?
?
?
Tarini et al., Graphical Models 2005
6Related Work
- Planar mirror
- Spherical mirror
- Corner reflections
- Edge reflections
Francken et al., CRV 2007
7Our Approach
- Planar mirror
- Spherical mirror
- Corner reflections
- Edge reflections
- Surface reflection
- Increased accuracy
- Less manual interventions
- Robust screen reflectiondetection
8Concept
- Mirror detection
- Screen pixel labeling
- 3D reconstruction
9Mirror detection
- Internal camera parameters K
- Background subtraction
- Edge extraction
- Ellipse fitting
- 2D ellipse to 3D sphere
10Screen pixel labeling
Find screen-reflection correspondences
?
11Screen pixel labeling
12Screen pixel labeling
13Screen pixel labeling
14Screen pixel labeling
15Screen pixel labeling
16Screen pixel labeling
17Screen pixel labeling
- Screen position as
- Intensities
- 2 patterns
- 4 patterns
- 6 patterns
- 8 patterns
18Reflection mask
Find reflection mask
19Reflection mask
Displayed patterns
Recorded images
Intensity differences
20Reflection mask
Displayed patterns
Recorded images
Intensity differences
21Reflection mask
Displayed patterns
Recorded images
Intensity differences
22Reflection mask
Displayed patterns
Recorded images
Intensity differences
23Reflection mask
Displayed patterns
Recorded images
Intensity differences
24Reflection mask
Displayed patterns
Recorded images
Intensity differences
25Reflection mask
Displayed patterns
Threshold
Inter- reflection
Direct reflection
Recorded images
Intensity differences
263D reconstruction
- Reflected rayintersections
- Plane estimation
- Grid estimation
Known parameters
273D reconstruction
- Reflected rayintersections
- Plane estimation
- Grid estimation
Solution Find 2D 2D similarity transform
Result 2D pixel u ? 3D location x
x M . u
28Overview
3D sphere locations
Reflection mask
Labels
x M . u
29Results
- Error as function of pattern refinement
- Accuracy
- Ground truth
- Francken et al., CRV 2007
- Our approach
Error 1.1-2.4 cm
Error 0.3-0.4 cm
30Results
- Error as function of sphere combinations
31Results
- Error as function of sphere combinations
32Results
- Error as function of sphere combinations
33Results
- Error as function of sphere combinations
34Conclusion
- Screen-camera calibration using Gray codes
- Increased accuracy
- Less manual interventions
- Robust screen reflectiondetection
35Future Work
- Gradient patterns
- Speed!
- Quality?
- Camera defocus
- Which patternsare robust?
Blurry reflections
Sharp sphere
36Questions?
3D sphere locations
Reflection mask
Labels
x M . u
yannick.francken_at_uhasselt.be
http//research.edm.uhasselt.be/yfrancken
37TODO bronnen, accuracy ERROR ipv scherm afstanden