Title: Chapter IV The Maxwell Boltzmann Gas
1Chapter IV The Maxwell Boltzmann Gas
- Preceding chapter General statistical laws for
ideal gases both BE, FD distributions and Maxwell
Boltzmann distribution. - 1) MB distribution is simpler than
- 2) MB distribution is an approximate one.
- 3) But it is applicable.
- 4) until at very low temperatures, MB is a very
good mathematical description.
240. The Maxwell Boltzmann monoatomic Gas in the
Classical Approximation. Phase Volume of a Cell
and the Zero Point Entropy
- Discuss
- 1) a molecular ideal gas at sufficiently high
temperature, and following MB distribution - 2) ignoring the energy quantization
- 3) calculating the thermodynamic functions
- U?S?H or W(enthalpy, heat content)?F?G
- Only a ?(-PV) potential can be defined uniquely.
3????????????
- ????N???U?????,????MB????????????a???
- ??(denominator)???????(integral).
- ??
- ?????
4????????????
- ?????????CV?
- ???????? ??????,???????????cell???a?(?????Z1?????h
0r ) - ?????????
- ????
- ??????????????? a ??????
5??????????
- According to
- The integral of state is expressed by
- Introducing the integration variable x ? / T
- The internal energy of a monoatomic gas is
6Thermodynamic quantities T
- Chemical potential
- From Eq.(38.15), the ?-potential is
- The enthalpy is
- The free energy and entropy is
- ??????????
7- The entropy is
- It should be noted that the formulae of entropy
is inapplicable at low temperatures. - Because, as T?0, S ?-?, which contradicts with
the Nerst theorem of S(T?0)?0. - The thermodynamic functions at low temperatures
must take into account the degeneracy, the
quantization of energy.
841. The Maxwell distribution
- This section is devoted to the translational(??)
motion ?? of a MB ideal gas. From Eq.(37.6)
- ??dN?????????(???)???????,?????? ?d? ?????dW
???dW??????????,??????????????,??????????????(Z),?
???????????????????????
9?????????
- ????????????????,???????????,the energy of a
molecule
U(x,y,z) is the potential energy of a molecule in
a applied field. (such as Gravity). If the space
is divided into two factors momentum and
coordinates(?????). The probability is
10- The momentum and coordinate distributions are
independent. Integrating over coordinate - Calculating the integrating in the denominator
- The momentum distribution of molecules
11- The velocity distribution is
- ???Maxwell????,??????????
- 1)?????
- 2)????
- 3)?????
12The energy of translational motion
- From above Eq.
- The form of the distribution
13In vx?vy?vz momentum space
- 4?v2dv dvxdvydvz, therefore,
- Maxwell ???????????? ????????? ??????????
zero
??? ???Maxwell??????
14??,?????????????????????,??????(kinetic
energy)???,???(mechanics)????????????aihpiph??????
???????
?????????????????????????????????????????????????
??????????????,?????,????,????,?????????
15- ??,???????,????????????????????????n??????,???????
?????,???????3n-5??????????????,???????3n-6?
16- ??,?????????????????????????????????,????????
- brsqrqs, brs?????????
- ?????????????????,?????
- ??????,??i,k??1?3n,r,s??1?3n-5?3n-6???????
17- V???????????????B??????????????pl ,
qs,??T1/2???,??????T????l ????????????,????? - ???????
- ??????
18????????
- ?????????????????????????????NAT/2????????????2??
?,?NAT ? - ?????????????
- ?????????,????3 NAT/2????????
- ?????,????Cv7 NA/2Cp 9NA/2?
- ???? Cv5 NA/2Cp 7NA/2?
- ??????????Cv7 NA/2,????????,Cv???,????7
NA/2?,????????????????(??)?
19- ??????????
- ????????????????kT/2. ???p??q???,?????????
2044. The Maxwell-Boltzmann Gas with Two Energy
Levels
- Example N ????????????????? ,????1/2,
?????????????H ???????,?????? -?H????,?????? ?H?
?????????????????????????,???????-?H ,????????H
??????????,?????????? 0,??????? ?1?
21??????????
- ???????????????????????????In a two-level system,
g0 and g1 are the degeneracies of two energy
levels. The occupation numbers have the
expressions - Here, ?is the chemical potential, N N0N1?
22????????????
- ?????????????????
- ??????????????????????
???????,???????????????????,???????,??????????,???
??????????,?????????????
??????,???????????????
23??
24????????
25????????
- T?0 K?,?????????e-? /T????,???????????,?????
- ????Tmax? ?lng1/g0gtgt1,??dC/dT0,????
- ??????
- ????
- ?????????
26???????
- ?????????,??Tmax?,
- ???????, ???????
- ???????????????,
- ???????,???????,
- ????????N1/N0 g1/g0?
- ????,????????,??????????????,???????,?????????????
?????????,????????????,?????