Chapter IV The Maxwell Boltzmann Gas - PowerPoint PPT Presentation

1 / 26
About This Presentation
Title:

Chapter IV The Maxwell Boltzmann Gas

Description:

Chapter IV The Maxwell Boltzmann Gas Preceding chapter: General statistical laws for ideal gases both BE, FD distributions and Maxwell Boltzmann distribution. – PowerPoint PPT presentation

Number of Views:180
Avg rating:3.0/5.0
Slides: 27
Provided by: 6649303
Category:

less

Transcript and Presenter's Notes

Title: Chapter IV The Maxwell Boltzmann Gas


1
Chapter IV The Maxwell Boltzmann Gas
  • Preceding chapter General statistical laws for
    ideal gases both BE, FD distributions and Maxwell
    Boltzmann distribution.
  • 1) MB distribution is simpler than
  • 2) MB distribution is an approximate one.
  • 3) But it is applicable.
  • 4) until at very low temperatures, MB is a very
    good mathematical description.

2
40. The Maxwell Boltzmann monoatomic Gas in the
Classical Approximation. Phase Volume of a Cell
and the Zero Point Entropy
  • Discuss
  • 1) a molecular ideal gas at sufficiently high
    temperature, and following MB distribution
  • 2) ignoring the energy quantization
  • 3) calculating the thermodynamic functions
  • U?S?H or W(enthalpy, heat content)?F?G
  • Only a ?(-PV) potential can be defined uniquely.

3
????????????
  • ????N???U?????,????MB????????????a???
  • ??(denominator)???????(integral).
  • ??
  • ?????

4
????????????
  • ?????????CV?
  • ???????? ??????,???????????cell???a?(?????Z1?????h
    0r )
  • ?????????
  • ????
  • ??????????????? a ??????

5
??????????
  • According to
  • The integral of state is expressed by
  • Introducing the integration variable x ? / T
  • The internal energy of a monoatomic gas is

6
Thermodynamic quantities T
  • Chemical potential
  • From Eq.(38.15), the ?-potential is
  • The enthalpy is
  • The free energy and entropy is
  • ??????????

7
  • The entropy is
  • It should be noted that the formulae of entropy
    is inapplicable at low temperatures.
  • Because, as T?0, S ?-?, which contradicts with
    the Nerst theorem of S(T?0)?0.
  • The thermodynamic functions at low temperatures
    must take into account the degeneracy, the
    quantization of energy.

8
41. The Maxwell distribution
  • This section is devoted to the translational(??)
    motion ?? of a MB ideal gas. From Eq.(37.6)
  • ??dN?????????(???)???????,?????? ?d? ?????dW

???dW??????????,??????????????,??????????????(Z),?
???????????????????????
9
?????????
  • ????????????????,???????????,the energy of a
    molecule

U(x,y,z) is the potential energy of a molecule in
a applied field. (such as Gravity). If the space
is divided into two factors momentum and
coordinates(?????). The probability is
10
  • The momentum and coordinate distributions are
    independent. Integrating over coordinate
  • Calculating the integrating in the denominator
  • The momentum distribution of molecules

11
  • The velocity distribution is
  • ???Maxwell????,??????????
  • 1)?????
  • 2)????
  • 3)?????

12
The energy of translational motion
  • From above Eq.
  • The form of the distribution

13
In vx?vy?vz momentum space
  • 4?v2dv dvxdvydvz, therefore,
  • Maxwell ???????????? ????????? ??????????

zero
??? ???Maxwell??????
14
  • ?Maxwell?????????,?? ??

??,?????????????????????,??????(kinetic
energy)???,???(mechanics)????????????aihpiph??????
???????
?????????????????????????????????????????????????
??????????????,?????,????,????,?????????
15
  • ??,???????,????????????????????????n??????,???????
    ?????,???????3n-5??????????????,???????3n-6?

16
  • ??,?????????????????????????????????,????????
  • brsqrqs, brs?????????
  • ?????????????????,?????
  • ??????,??i,k??1?3n,r,s??1?3n-5?3n-6???????

17
  • V???????????????B??????????????pl ,
    qs,??T1/2???,??????T????l ????????????,?????
  • ???????
  • ??????

18
????????
  • ?????????????????????????????NAT/2????????????2??
    ?,?NAT ?
  • ?????????????
  • ?????????,????3 NAT/2????????
  • ?????,????Cv7 NA/2Cp 9NA/2?
  • ???? Cv5 NA/2Cp 7NA/2?
  • ??????????Cv7 NA/2,????????,Cv???,????7
    NA/2?,????????????????(??)?

19
  • ??????????
  • ????????????????kT/2. ???p??q???,?????????

20
44. The Maxwell-Boltzmann Gas with Two Energy
Levels
  • Example N ????????????????? ,????1/2,
    ?????????????H ???????,?????? -?H????,?????? ?H?

?????????????????????????,???????-?H ,????????H
??????????,?????????? 0,??????? ?1?
21
??????????
  • ???????????????????????????In a two-level system,
    g0 and g1 are the degeneracies of two energy
    levels. The occupation numbers have the
    expressions
  • Here, ?is the chemical potential, N N0N1?

22
????????????
  • ?????????????????
  • ??????????????????????

???????,???????????????????,???????,??????????,???
??????????,?????????????
??????,???????????????
23
  • ????????(7.4)?????

??
  • ??????????

24
  • ?????
  • ??????????? ???

????????
25
????????
  • T?0 K?,?????????e-? /T????,???????????,?????
  • ????Tmax? ?lng1/g0gtgt1,??dC/dT0,????
  • ??????
  • ????
  • ?????????

26
???????
  • ?????????,??Tmax?,
  • ???????, ???????
  • ???????????????,
  • ???????,???????,
  • ????????N1/N0 g1/g0?
  • ????,????????,??????????????,???????,?????????????
    ?????????,????????????,?????
Write a Comment
User Comments (0)
About PowerShow.com