Title: Turbulent equilibrium, and superhalo solar wind electron distribution, and nonextensive entropy
1Turbulent equilibrium, and superhalo solar wind
electron distribution, and nonextensive entropy
INTERNATIONAL ASTROPHYSICS FORUM 2011
Frontiers in Space Environment Research,
Alpbach/June 20-24, 2011
- Peter H. Yoon
- U. Maryland, College Park, USA
2Outline
- Tsallis entropy
- Solar wind electrons
- Beam-plasma instability
- Turbulent equilibrium
- Conclusions
3TSALLIS ENTROPY
4Boltzmann entropy
- S k log W
- W of ways a single molecule in an ideal gas
can be arranged. - What does this mean?
5A Toy Example
6A Toy Example
- Two colored balls
- In how many ways can the balls be arranged?
7A Toy Example
- Two colored balls
- In how many ways can the balls be arranged?
- Answer 2
- S k log 2
8S(W) k log W
kB 1.3806503 x 1023 m2 kg s2 K1
- of ways one molecule can be arranged in an
ideal gas. - Ref. K. Huang, Statistical Mechanics
9SB k log 2
10SB k log 2
SAB k log 4 k log 2 k log 2 SA SB
11Extensivity of Boltzmann Entropy
S(W) k log W
S(W) k log W
S(WW) k log WW S(W) S(W)
12Non-Extensive Entropy
S(W) k log W
S(W) k log W
S(WW) ? S(W) S(W)
13Non-Extensive Entropy
- q defines the degree of non-extensivity.
- q 1 (Boltzmann limit)
-
14Boltzmann vs Tsallis Entropy
Continuum limit
Discrete versions
15SOLAR WIND ELECTRONS
162007 January 9 Linghua Wang, Robert P. Lin, Chadi
Salem
17fe(v)
Electron Velocity Distribution
By Linghua Wang, Davin Larsen, Robert Lin
18Gaussian vs Kappa Distribution
Kappa distribution Olbert, Vasyliunas
19Kappa Model
Energetic (superthermal) tail
? 8
20Most probable states
21Boltzmann vs Kappa Distributions as thermodynamic
equilibria
Leubner, 2004 Treumann et al., 2008 Livadiotis
and McComas, 2009
22Maxwellian (Gaussian) vs Kappa Distribution
- If one defines
- k 1/(1q)
- then Tsallis distribution becomes kappa-like
distribution (Vasyliunas, 1968),
23fe(v)
Electron Velocity Distribution
By Linghua Wang, Davin Larsen, Robert Lin
24BEAM-PLASMA INSTABILITY AND LANGMUIR TURBULENCE
25Exospheric model Scudder Olbert, 1979
Pierrard et al., 2009, Turbulence model this
talk
26Bump-on-tail instability
- A. Vedenov, E. P. Velikhov, R. Z. Sagdeev, Nucl.
Fusion 1, 82 (1961). - W. E. Drummond and D. Pines, Nucl. Fusion Suppl.
3, 1049 (1962).
27Quasi-linear beam-plasma interaction
Spontaneous drag (discrete particle effect)
Velocity space diffusion
Spontaneous emission (fluctuation-dissipation
theorem)
Induced emission (Landau damping/ Quasi-linear
growth/damping rate)
28Quasi-linear beam-plasma interaction
29Weak turbulence theory
L. M. Gorbunov, V. V. Pustovalov, and V. P.
Silin, Sov. Phys. JETP 20, 967 (1965) L. M.
Altshul and V. I. Karpman, Sov Phys. JETP 20,
1043 (1965) L. M. Kovrizhnykh, Sov. Phys. JETP
21, 744 (1965) B. B. Kadomtsev, Plasma
Turbulence (Academic Press, 1965) V. N.
Tsytovich, Sov. Phys. USPEKHI 9, 805 (1967) V.
N. Tsytovich, Nonlinear Effects in Plasma (Plenum
Press, 1970) V. N. Tsytovich, Theory of
Turbulent Plasma (Consultants Bureau, 1977) A.
G. Sitenko, Fluctuations and Non-Linear Wave
Interactions in Plasmas (Pergamon, 1982)
30Equation for fe(v)
Spontaneous drag (discrete particle effect)
Velocity space diffusion
31Equation for I(k)
Spontaneous emission (fluctuation-dissipation
theorem)
Induced emission (Landau damping/ Quasi-linear
growth/damping rate)
32Equation for I(k)
Linear wave-particle resonance
33Spontaneous decay
Induced decay
34Nonlinear wave-wave resonance
35Spontaneous scattering
Induced scattering
(scattering off thermal ions)
36Nonlinear wave-particle resonance
37Discrete-particle (collisional) effect
g 1/(nlD3)
38Weak turbulence theory
Muschietti Dum, 1991 Ziebell et al., 2001
Kontar Pecseli, 2002
39(No Transcript)
40(No Transcript)
41Long-time behavior of bump-on-tail Langmuir
instability
P. H. Yoon, T. Rhee, and C.-M. Ryu,
Self-consistent generation of superthermal
electrons by beam-plasma interaction, PRL 95,
215003 (2005).
42Theory
C.-M. Ryu, T. Rhee, T. Umeda, P. H. Yoon, and Y.
Omura, Turbulent acceleration of superthermal
electrons, Phys. Plasmas 14, 100701 (2007).
43fe(v)
Electron Velocity Distribution
By Linghua Wang, Davin Larsen, Robert Lin
44TURBULENT EQUILIBRIUM
45fe(v)
Electron kinetic equation
I(k)
Langmuir wave kinetic equation
46Steady-State Solution (Quasi-Equilibrium)
Electron kinetic equation
Steady-state solution Hasegawa et al., 1985
47Langmuir wave kinetic equation
48 Balance of spontaneous emission and induced
emission
Self-consistent kappa distribution but k is
undetermined
49Langmuir wave kinetic equation
50 To determine k one must also balance
spontaneous and induced scattering (turbulent
equilibrium)
0
51 Steady-state solution (Turbulent
quasi-equilibrium)
52 Theory
Observation
53(No Transcript)
54CONCLUSIONS
55Summary
- Solar wind electrons feature kappa-like
distribution, implying turbulent
quasi-equilibrium. - Alternatively, it implies non-extensive
equilibrium. - Turbulent equilibrium non-extensive equilibrium
(?)