Introduction Econometrics for Mathematics Bachelor Students - PowerPoint PPT Presentation

About This Presentation
Title:

Introduction Econometrics for Mathematics Bachelor Students

Description:

... diagnostics/ model choice Structural Modelling causal ... GDP90 : GDP(A) at current market prices ... 1985=100) M4 : Money stock M4 (end ... – PowerPoint PPT presentation

Number of Views:377
Avg rating:3.0/5.0
Slides: 25
Provided by: jmjm5
Category:

less

Transcript and Presenter's Notes

Title: Introduction Econometrics for Mathematics Bachelor Students


1
Introduction Econometrics forMathematics
Bachelor Students
  • Kees Jan van Garderen
  • Programme Director BSc MSc in Econometrics

2
Kees Jan van GarderenProgramme Director BSc
MSc in Econometrics
  • BSc MSc in Econometrics UvA, MSc title
  • Fractionele Matrix Calculus PhD, Trinity
    College, Cambridge, title
  • Inference in Curved Exponential Models
    uses non-Riemannian geometry in
    econometric/statistical models
  • Research Interest Econometrics
  • Econometric Theory - Exact Distribution Theory
  • Approximations (Tilted or Saddlepoint, Edgeworth
    )
  • Inference and Curvature in Econometric Models
  • Income Inequality
  • Aggregation
  • Teaching
  • 2nd year Econometrics 1 and 2
  • M.Phil. Tinbergen Institute, Advanced
    Econometrics II

3
Department of Quantitative Economics
  • Actuarial Science
  • Operations Research
  • Econometrics Economic Theory (Mathematical
    Economics)
  • UvA - Econometrics
  • CeNDEF (Center for Nonlinear Dynamics in
    Economics and Finance)

4
Econometrics
5
Econometrics and Statistics
  • Regression Models
  • Linear non-Linear
  • Multivariate Analysis
  • Cross-section
  • Likelihood Theory
  • Time Series
  • ARIMA
  • Non-Parametrics

6
Econometrics and Statistics
  • Non Experimental (i.i.d) Data
  • sample selection (self-selection)
  • endogeneity, instrumental variables
  • Misspecified Models diagnostics/ model
    choice
  • Structural Modelling
  • causal relationships economic theory and
    insight
  • Identification Structural ltgt Reduced Form
  • moment conditions
  • Multivariate Time-series Analysis VAR with
    Non-stationary data Cointegration CVAR

7
Three Examples
  • Modelling wages
  • Instrumental Variable regression
  • Heckman
  • Demand and Supply
  • Cointegration (modelling with non-stationary
    timeseries)

8
Modelling Wages I returns to schooling
  • Log(income) b1 b2 schooling b3 age b4
    tenure e
  • E-views

Expected income determines length of
schooling People with high academic ability earn
more and will go to school longer (pay-offs for
them are higher) Inappropriate to attribute to
schooling only.
9
Regression with Instrumental Variables
Model Estimator (OLS) Unbiased? Consistent?
Model Stochastics
Gewone Kleinste Kwadraten (via regressie of
lineaire algebra)
10
Regression with Instrumental Variables
11
Modelling Wages II sex discrimination
  • Log(income) b1 b2 Male b3 age . e1
  • . reg LGEARNCL COLLYEAR EXP ASVABC MALE ETHBLACK
    ETHHISP
  • --------------------------------------------------
    ----
  • LGEARNCL Coef. Std. Err. t
    Pgtt
  • -------------------------------------------------
    ----
  • COLLYEAR .1380715 .0201347 6.86
    0.000
  • EXP .039627 .0085445 4.64
    0.000
  • ASVABC .0063027 .0052975 1.19
    0.235
  • MALE .3497084 .0673316 5.19
    0.000
  • ETHBLACK -.0683754 .1354179 -0.50
    0.614
  • ETHHISP -.0410075 .1441328 -0.28
    0.776
  • _cons 1.369946 .2884302 4.75
    0.000
  • --------------------------------------------------
    ----

12
Modelling Wages II
  • Log(income) b1 b2 Male b3 age . e1
  • Working 1 Z gt 0 0 Z ? 0
  • Z f( predicted earnings, children, married,
    ) e2 If e1 and e2 correlated, then E e1
    working ? 0

13
Maximum Likelihood
  • . g COLLYEAR 0
  • . replace COLLYEAR S-12 if Sgt12
  • (286 real changes made)
  • . g LGEARNCL LGEARN if COLLYEARgt0
  • (254 missing values generated)
  • . heckman LGEARNCL COLLYEAR EXP ASVABC MALE
    ETHBLACK ETHHISP, select(ASVABC MALE ETHBLACK
    ETHHISP SM SF SIBLINGS)
  • Iteration 0 log likelihood -510.46251
  • Iteration 1 log likelihood -509.65904
  • Iteration 2 log likelihood -509.19041
  • Iteration 3 log likelihood -509.18587
  • Iteration 4 log likelihood -509.18587
  • Heckman selection model
    Number of obs 540
  • (regression model with sample selection)
    Censored obs 254

14
Maximum Likelihood
  • --------------------------------------------------
    ----------------------------
  • Coef. Std. Err. z
    Pgtz 95 Conf. Interval
  • -------------------------------------------------
    ----------------------------
  • LGEARNCL
  • COLLYEAR .126778 .0196862 6.44
    0.000 .0881937 .1653623
  • EXP .0390787 .008101 4.82
    0.000 .023201 .0549565
  • ASVABC -.0136364 .0069683 -1.96
    0.050 -.027294 .0000211
  • MALE .4363839 .0738408 5.91
    0.000 .2916586 .5811092
  • ETHBLACK -.1948981 .1436681 -1.36
    0.175 -.4764825 .0866862
  • ETHHISP -.2089203 .159384 -1.31
    0.190 -.5213072 .1034667
  • _cons 2.7604 .4290092 6.43
    0.000 1.919557 3.601242
  • -------------------------------------------------
    ----------------------------
  • select
  • ASVABC .070927 .008141 8.71
    0.000 .054971 .086883
  • MALE -.3814199 .1228135 -3.11
    0.002 -.6221298 -.1407099
  • ETHBLACK .433228 .2184279 1.98
    0.047 .0051172 .8613388
  • ETHHISP 1.198633 .299503 4.00
    0.000 .6116179 1.785648
  • SM .0342841 .0302181 1.13
    0.257 -.0249424 .0935106
  • SF .0816985 .021064 3.88
    0.000 .0404138 .1229832

15
Maximum Likelihood versus Linear regression
  • . heckman LGEARNCL COLLYEAR EXP ASVABC MALE
    ETHBLACK ETHHISP,
  • select(ASVABC MALE ETHBLACK ETHHISP SM SF
    SIBLINGS)
  • --------------------------------------------------
    ----------------------------
  • Coef. Std. Err. z
    Pgtz 95 Conf. Interval
  • -------------------------------------------------
    ----------------------------
  • LGEARNCL
  • COLLYEAR .126778 .0196862 6.44
    0.000 .0881937 .1653623
  • EXP .0390787 .008101 4.82
    0.000 .023201 .0549565
  • ASVABC -.0136364 .0069683 -1.96
    0.050 -.027294 .0000211
  • MALE .4363839 .0738408 5.91
    0.000 .2916586 .5811092
  • ETHBLACK -.1948981 .1436681 -1.36
    0.175 -.4764825 .0866862
  • ETHHISP -.2089203 .159384 -1.31
    0.190 -.5213072 .1034667
  • _cons 2.7604 .4290092 6.43
    0.000 1.919557 3.601242
  • -------------------------------------------------
    ----------------------------
  • . reg LGEARNCL COLLYEAR EXP ASVABC MALE ETHBLACK
    ETHHISP
  • --------------------------------------------------
    ----------------------------

16
Demand and Supply
  • Q 5 - 0.9 P 1.0 income e 1
    ( demand )
  •  
  • Q Quantity (in kg),
  • P Price (in )
  • income in 000
  • e N( 0, S ).

Q 3 1.5 P 1.0 cost e 2
( supply )   cost in 000 .
17
Demand and Supply(unconventionally P(rices) on
horizontal axis)
Shift in supply
supply
demand
demand
Increase income
supply
demand
18
Data Price Quantity
Varying income
Q
12
supply
10
8
6
4
2
demand
P
2
4
6
8
10
12
19

True relations
  • Q 5 - 0.9 P 1.0 income e1
    ( demand )

Q 3 1.5 P 1.0 cost e2
( supply )
Estimated relations
  • We can
  • Estimate 2 equations correctly from 1 set of
    data
  • Lesson
  • Running regression can be very misleading
  • Use economic theory and econometric techniques

20
Cointegration Money demand
  • m-p g g2 y g3 Dp g4 R 
  • m -p real money balances in logs, y real
    transactions (i.e.GDP) in logs, p log price
    index,R interest rate
  •  
  • GDP90 GDP(A) at current market prices index
    (1990100)
  • P RPI Retail price index all items (1985100)
  • M4 Money stock M4 (end period) level,
    Seasonally Adjusted R Treasury Bills 3 month
    yield
  • Q1,...,Q4 Quarter 1 to quarter 4 dummy.

21
Possibilities
  • Minor Econometrics
  • Deficiency Programme/Schakel programma
  • B.Sc. in Econometrics and ORM or Actuarial
    Sciences
  • M.Sc. in Econometrics (Financial Econometrics,
    Math Econ)

22
M.Sc. Econometrics /Mathematical Economics
Blok I (15 EC) Adv Econometrics 1 General
Equilibrium Th. Elective Blok II (15 EC) Adv.
Econometrics 2 Game Theory Elective
Blok III (15 EC) Field course (Fin. Ectr) Field
course (Micr. Ectr) Field course (caput
ME2) Blok IV Master Thesis
23
Deficiëntieprogramma Econometrie (35 ec)
studenten met WO bachelor- of master Wiskunde
of Natuurkunde of equivalente exacte opleiding
  • alvorens toegelaten te kunnen worden tot de MSc
    in Econometrics, de volgende deficiënties
    weggewerkt te hebben
  • steunvakken KReS 3 (5 ec) en KReS 4 (5 ec)
  • verbredingsvak Econometrie 3 (5 ec)
  • verbredingsvak Tijdreeksanalyse (5 ec)
  • verbredingsvak Wiskundige Economie B (5 ec)
  • Wiskundige Economie A (5 ec) en Inleiding
    Speltheorie (5 ec)

24
Tot spoedig ziens !?
  • Kees Jan van Garderen
  • Programme Director BSc MSc Econometrics
  • Faculty of Economics and Business
  • University of Amsterdam
  • Roetersstraat 11
  • 1018 WB, Amsterdam
  • Room E 3.25, Economics Building
  • E-Building, central tower
  • http//www.studeren.uva.nl/msc_econometrics
  • http//studiegids.uva.nl/web/uva/sgs/en/p/241.html
  • tel 31-20-525 4220
  • fax 31-20-525 4349
  • K.J.vanGarderen_at_uva.nl
Write a Comment
User Comments (0)
About PowerShow.com