Title: Introduction Econometrics for Mathematics Bachelor Students
1Introduction Econometrics forMathematics
Bachelor Students
- Kees Jan van Garderen
- Programme Director BSc MSc in Econometrics
2Kees Jan van GarderenProgramme Director BSc
MSc in Econometrics
- BSc MSc in Econometrics UvA, MSc title
- Fractionele Matrix Calculus PhD, Trinity
College, Cambridge, title - Inference in Curved Exponential Models
uses non-Riemannian geometry in
econometric/statistical models - Research Interest Econometrics
- Econometric Theory - Exact Distribution Theory
- Approximations (Tilted or Saddlepoint, Edgeworth
) - Inference and Curvature in Econometric Models
- Income Inequality
- Aggregation
- Teaching
- 2nd year Econometrics 1 and 2
- M.Phil. Tinbergen Institute, Advanced
Econometrics II
3Department of Quantitative Economics
- Actuarial Science
- Operations Research
- Econometrics Economic Theory (Mathematical
Economics) - UvA - Econometrics
- CeNDEF (Center for Nonlinear Dynamics in
Economics and Finance)
4Econometrics
5Econometrics and Statistics
- Regression Models
- Linear non-Linear
- Multivariate Analysis
- Cross-section
- Likelihood Theory
- Time Series
- ARIMA
- Non-Parametrics
6Econometrics and Statistics
- Non Experimental (i.i.d) Data
- sample selection (self-selection)
- endogeneity, instrumental variables
- Misspecified Models diagnostics/ model
choice - Structural Modelling
- causal relationships economic theory and
insight - Identification Structural ltgt Reduced Form
- moment conditions
- Multivariate Time-series Analysis VAR with
Non-stationary data Cointegration CVAR
7Three Examples
- Modelling wages
- Instrumental Variable regression
- Heckman
- Demand and Supply
- Cointegration (modelling with non-stationary
timeseries)
8Modelling Wages I returns to schooling
- Log(income) b1 b2 schooling b3 age b4
tenure e - E-views
Expected income determines length of
schooling People with high academic ability earn
more and will go to school longer (pay-offs for
them are higher) Inappropriate to attribute to
schooling only.
9Regression with Instrumental Variables
Model Estimator (OLS) Unbiased? Consistent?
Model Stochastics
Gewone Kleinste Kwadraten (via regressie of
lineaire algebra)
10Regression with Instrumental Variables
11Modelling Wages II sex discrimination
- Log(income) b1 b2 Male b3 age . e1
- . reg LGEARNCL COLLYEAR EXP ASVABC MALE ETHBLACK
ETHHISP - --------------------------------------------------
---- - LGEARNCL Coef. Std. Err. t
Pgtt - -------------------------------------------------
---- - COLLYEAR .1380715 .0201347 6.86
0.000 - EXP .039627 .0085445 4.64
0.000 - ASVABC .0063027 .0052975 1.19
0.235 - MALE .3497084 .0673316 5.19
0.000 - ETHBLACK -.0683754 .1354179 -0.50
0.614 - ETHHISP -.0410075 .1441328 -0.28
0.776 - _cons 1.369946 .2884302 4.75
0.000 - --------------------------------------------------
----
12Modelling Wages II
- Log(income) b1 b2 Male b3 age . e1
- Working 1 Z gt 0 0 Z ? 0
- Z f( predicted earnings, children, married,
) e2 If e1 and e2 correlated, then E e1
working ? 0
13Maximum Likelihood
- . g COLLYEAR 0
- . replace COLLYEAR S-12 if Sgt12
- (286 real changes made)
- . g LGEARNCL LGEARN if COLLYEARgt0
- (254 missing values generated)
- . heckman LGEARNCL COLLYEAR EXP ASVABC MALE
ETHBLACK ETHHISP, select(ASVABC MALE ETHBLACK
ETHHISP SM SF SIBLINGS) - Iteration 0 log likelihood -510.46251
- Iteration 1 log likelihood -509.65904
- Iteration 2 log likelihood -509.19041
- Iteration 3 log likelihood -509.18587
- Iteration 4 log likelihood -509.18587
- Heckman selection model
Number of obs 540 - (regression model with sample selection)
Censored obs 254
14Maximum Likelihood
- --------------------------------------------------
---------------------------- - Coef. Std. Err. z
Pgtz 95 Conf. Interval - -------------------------------------------------
---------------------------- - LGEARNCL
- COLLYEAR .126778 .0196862 6.44
0.000 .0881937 .1653623 - EXP .0390787 .008101 4.82
0.000 .023201 .0549565 - ASVABC -.0136364 .0069683 -1.96
0.050 -.027294 .0000211 - MALE .4363839 .0738408 5.91
0.000 .2916586 .5811092 - ETHBLACK -.1948981 .1436681 -1.36
0.175 -.4764825 .0866862 - ETHHISP -.2089203 .159384 -1.31
0.190 -.5213072 .1034667 - _cons 2.7604 .4290092 6.43
0.000 1.919557 3.601242 - -------------------------------------------------
---------------------------- - select
- ASVABC .070927 .008141 8.71
0.000 .054971 .086883 - MALE -.3814199 .1228135 -3.11
0.002 -.6221298 -.1407099 - ETHBLACK .433228 .2184279 1.98
0.047 .0051172 .8613388 - ETHHISP 1.198633 .299503 4.00
0.000 .6116179 1.785648 - SM .0342841 .0302181 1.13
0.257 -.0249424 .0935106 - SF .0816985 .021064 3.88
0.000 .0404138 .1229832
15 Maximum Likelihood versus Linear regression
- . heckman LGEARNCL COLLYEAR EXP ASVABC MALE
ETHBLACK ETHHISP, - select(ASVABC MALE ETHBLACK ETHHISP SM SF
SIBLINGS) - --------------------------------------------------
---------------------------- - Coef. Std. Err. z
Pgtz 95 Conf. Interval - -------------------------------------------------
---------------------------- - LGEARNCL
- COLLYEAR .126778 .0196862 6.44
0.000 .0881937 .1653623 - EXP .0390787 .008101 4.82
0.000 .023201 .0549565 - ASVABC -.0136364 .0069683 -1.96
0.050 -.027294 .0000211 - MALE .4363839 .0738408 5.91
0.000 .2916586 .5811092 - ETHBLACK -.1948981 .1436681 -1.36
0.175 -.4764825 .0866862 - ETHHISP -.2089203 .159384 -1.31
0.190 -.5213072 .1034667 - _cons 2.7604 .4290092 6.43
0.000 1.919557 3.601242 - -------------------------------------------------
---------------------------- - . reg LGEARNCL COLLYEAR EXP ASVABC MALE ETHBLACK
ETHHISP - --------------------------------------------------
----------------------------
16Demand and Supply
- Q 5 - 0.9 P 1.0 income e 1
( demand ) -
- Q Quantity (in kg),
- P Price (in )
- income in 000
-
- e N( 0, S ).
Q 3 1.5 P 1.0 cost e 2
( supply ) cost in 000 .
17Demand and Supply(unconventionally P(rices) on
horizontal axis)
Shift in supply
supply
demand
demand
Increase income
supply
demand
18Data Price Quantity
Varying income
Q
12
supply
10
8
6
4
2
demand
P
2
4
6
8
10
12
19 True relations
- Q 5 - 0.9 P 1.0 income e1
( demand )
Q 3 1.5 P 1.0 cost e2
( supply )
Estimated relations
- We can
- Estimate 2 equations correctly from 1 set of
data - Lesson
- Running regression can be very misleading
- Use economic theory and econometric techniques
20Cointegration Money demand
- m-p g g2 y g3 Dp g4 R
- m -p real money balances in logs, y real
transactions (i.e.GDP) in logs, p log price
index,R interest rate -
- GDP90 GDP(A) at current market prices index
(1990100) - P RPI Retail price index all items (1985100)
- M4 Money stock M4 (end period) level,
Seasonally Adjusted R Treasury Bills 3 month
yield
- Q1,...,Q4 Quarter 1 to quarter 4 dummy.
21Possibilities
- Minor Econometrics
- Deficiency Programme/Schakel programma
- B.Sc. in Econometrics and ORM or Actuarial
Sciences - M.Sc. in Econometrics (Financial Econometrics,
Math Econ)
22M.Sc. Econometrics /Mathematical Economics
Blok I (15 EC) Adv Econometrics 1 General
Equilibrium Th. Elective Blok II (15 EC) Adv.
Econometrics 2 Game Theory Elective
Blok III (15 EC) Field course (Fin. Ectr) Field
course (Micr. Ectr) Field course (caput
ME2) Blok IV Master Thesis
23Deficiëntieprogramma Econometrie (35 ec)
studenten met WO bachelor- of master Wiskunde
of Natuurkunde of equivalente exacte opleiding
- alvorens toegelaten te kunnen worden tot de MSc
in Econometrics, de volgende deficiënties
weggewerkt te hebben - steunvakken KReS 3 (5 ec) en KReS 4 (5 ec)
- verbredingsvak Econometrie 3 (5 ec)
- verbredingsvak Tijdreeksanalyse (5 ec)
- verbredingsvak Wiskundige Economie B (5 ec)
- Wiskundige Economie A (5 ec) en Inleiding
Speltheorie (5 ec)
24Tot spoedig ziens !?
- Kees Jan van Garderen
- Programme Director BSc MSc Econometrics
- Faculty of Economics and Business
- University of Amsterdam
- Roetersstraat 11
- 1018 WB, Amsterdam
- Room E 3.25, Economics Building
- E-Building, central tower
- http//www.studeren.uva.nl/msc_econometrics
- http//studiegids.uva.nl/web/uva/sgs/en/p/241.html
- tel 31-20-525 4220
- fax 31-20-525 4349
- K.J.vanGarderen_at_uva.nl