Title: Definizione del
1- Definizione del
- comportamento pro-sociale
2Overview
- Definizione del comportamento pro-sociale
- L'altruismo come dilemma sociale
- Un esempio etologico i pipistrelli vampiro
- l'utilità di un'analisi cross-metodologica
- Cooperazione e gruppi
- Un modello multi agente per l'evoluzione della
cooperazione - I mediatori cognitivi del comportamento
pro-sociale - implementazione di un sistema (quasi)cognitivo
per lo studio dell'altruismo
3Il comportamento altruistico
- Unazione altruistica
- comporta un costo (c) per lindividuo che la pone
in atto - produce un beneficio (b) per un altro individuo
- b gt c gt 0
- Viene eseguita e/o replicata in ragione di tale
beneficio (effettivo o rappresentato)
4Meccanismi causali
5Meccanismi causali
- Funzione adattativa
- Rappresentazioni
- mentali
6Interazione strategica
- Dilemma del Prigioniero
- T gt R gt P gt S
- 2R gt T S
7Interazione strategica
- Dilemma del Prigioniero
- T gt R gt P gt S gt b gt (b c) gt 0 gt c
- 2R gt T S gt 2(b c) gt (b c)
- Applicato al caso del comportamento altruistico
- T b R (b c) P 0 S c.
8L'evoluzione della cooperazione
- Quando si considera il comportamento altruistico
come il prodotto di una funzione adattativa, per
giustificare l'evoluzione della cooperazione
vengono solitamente utilizzati tre ordini di
fattori - 1. Parentela (kin selection, Hamilton 1964) la
stabilità evolutiva di un comportamento
altruistico è funzione del grado di parentela
degli organismi considerati. - r gt b/c
- r 1/2
- r b/2 .
9L'evoluzione della cooperazione
- Quando si considera il comportamento altruistico
come il prodotto di una funzione adattativa, per
giustificare l'evoluzione della cooperazione
vengono solitamente utilizzati tre ordini di
fattori - 2. Reciprocazione (reciprocal altruism, Trivers
1971) la teoria dell'altruismo reciproco
condiziona l'evoluzione della cooperazione alla
possibilità che un atto altruistico venga
restituito (probabilità di due altruisti di
reincontrarsi). - Tit-For-Tat metafora evoluzionistica
dell'altruismo reciproco.
10L'evoluzione della cooperazione
- Quando si considera il comportamento altruistico
come il prodotto di una funzione adattativa, per
giustificare l'evoluzione della cooperazione
vengono solitamente utilizzati tre ordini di
fattori - 3. Gruppi (group selection, Wilson Sober 1994)
in uno scenario in cui siano presenti più
gruppi, ognuno contenente percentuali differenti
di altruisti, un processo di selezione
inter-gruppo tenderebbe a preferire quelli nei
quali il gene altruista è presente in percentuale
maggiore.
11 12Altruism In Nature
- In nature, examples of altruism abound (cfr.
Brembs, 1996). - Inter-specific mutualism (Leimar and Axén, 1993).
- Predator inspector in shoaling fish (different
individuals swim towards the predator, gathering
information about his location and his current
motivational state (Milinski et al., 1990). - Among mammals,
- blood-sharing in vampire bats (Wilkinson, 1984)
- many controversial examples among primates.
13Ethological Data about Bats
- The species of vampires studied by Wilkinson
lives in Central America, in small groups sharing
cavity of trees (roost), where animals reproduce
and perform social activities (nursing, grooming
and sharing food) - Each night vampires go out hunting (finding
herbivores to suck blood from) - about 7 hunters find no prey,
- survive thanks to luckier fellows regurgitating a
portion of food ingested - This behavior "depends equally and independently
on degree of relatedness and an index of
opportunity for reciprocation (Wilkinson, 1984).
14The economy of food-sharing
- Un pasto garantisce ai pipistrelli 60h di
autonomia. - Il cibo donato, quantificato in base alla
percentuale di peso corporeo perso dall'animale,
avrà un'utilità marginale differente (h di
autonomia) per chi lo riceve. - Un atto di food-sharing avrà l'effetto di
conferire ad un conspecifico le energie
necessarie per tornare a cacciare.
15Vantaggio evolutivo del food-sharing
- Numero fallimenti consecutivi nel procacciarsi il
cibo in un anno 1,63. - Vantaggio evolutivo del food-sharing tasso di
mortalità annua ridotto dal 82 al 24.
16Why Bother with Vampires?
- We are not interested in sociobiological debate
per se. - Aims Model altruism and reciprocity at an
abstract level. - Using real data for setting parameters values in
a non arbitrary way. - Vampire bats offer real data about altruism as
strongly interdependent with survival
17 18The Problem in Nature
- Vampire bats altruism (Wilkinson, 1984)
- If successful, hunters regurgitate in favour of
unlucky fellows - Survival rate
- rises up to 80 of the initial population,
- as opposed to 20 without altruism.
- Why?
- Kin selection? Not quite
- Low average rate of relatedness among individuals
living in the same roosts (around 6). - Reciprocal altruism? Perhaps. But
- Simulations supporting group selection theory
have recently been run (see Paolucci et al.,
2003).
19Reciprocal Altruism Theory
- Direct version donor receives help from current
recipient. - Indirect version donor receives help from
someone else reciprocity circulates in the
group, increasing donors' fitness. - Circularity makes reciprocity fragile (cheaters
and noise). - Why self-interested agents participate in
indirect reciprocity? Altruists do not aim at
reciprocity, nor calculate its probability. - If altruism spreads, donors (offspring) are
reciprocated. - Altruistic acts increase donors' fitness.
- Reciprocity emergent effect of altruism.
20Group Selection Theory
- Groups are units of selection and reproduction
(Williams, 1971 Sober and Wilson, 1999), which
compete on the same evolutionary stage - groups with adaptive habits produce new offspring
groups - groups missing adaptive habits decline till
desegregation or extinction. - Haystack models between-group advantage of
cooperation Vs within-group advantage of
defection. - asexual reproduction with inheritance.
- new groups are formed either randomly or
nonrandomly - Altruism evolves (Maynard Smith, 1964 Cohen and
Eshel, 1976) with nonrandom matching processes
(altruists are likely to be matched with
altruists) - Harsch controversy on GST (Palmer, 2002 review of
Field's 2001), due to collectivist reading.
21Haystack Models
- Gli haystak models sono disegnati per studiare le
circostanze in cui il vantaggio della defezione
per gli individui può essere compensato (o
superato) dal vantaggio della cooperazione in un
processo di selezione fra gruppi. - L'algoritmo di un haystack model è suddiviso in
due fasi - reproductive phase ogni individuo nella
popolazione --divisa in gruppi-- si riproduce
asessualmente, generando una copia esatta di se
stesso. - dispersal phase gli individui vengono isolati e
riasseganti casualmente ad un nuovo gruppo.
22Haystack Models
- I componenti di un gruppo possono essere
strategicamente cooperativi o non cooperativi. - La formazione di gruppi nella dispersal phase
viene definita nonassortativa quando la
distribuzione delle strategie all'interno del mio
gruppo è indipendente dalla mia strategia. - In un haystack model, se i raggruppamenti sono
non assortativi ed il tasso di riproduzione è
determinato secondo i payoff di un Prisoner's
Dilemma, l'unico risultato possibile è una
popolazione composta esclusivamente da strategie
non cooperative.
23The First Place Challenge
- Altruists must be more likely to join groups
containing high numbers of altruists (Cooper and
Wallace, 2001). How? Typical question posed by
many authors e.g. - So even though a tribe full of selfless people
would prevail over a tribe full of selfish
people, it is hard to see how a tribe would get
full of selfless people in the first place. ...
Even if you magically intervened and implanted
sympathetic genes in 90 percent of the
population, these would steadily lose out to
their less ennobling rivals. (Wright 1994, page
187) - Selfless groups would be perpetually undermined
by the selfishness of their individuals. (Ridley
1997). - Any reasonable answer?
24Aims Of The Present Work
- Test
- RAT (donations enhance donors fitness) and
- GST (donations enhance group fitness)
- Wilikinson's analyzes all-cooperators vs
all-defectors. - What happens in intermediate conditions?
- Which is the minimal share of altruist?
- Does increase of survival rate correspond to
increase donors' fitness, or is it redistributed
over entire population? if so, are individual
donors always refunded or do they sustain a share
of the costs of redistribution? - Latter question crucial if donors are not
reciprocated in person or along their future
generations, reason to question reciprocal
altruism interpretation, and look for concurrent
explanation.
25The Simulation Model (1)
- Roost is a social space containing any number of
bats. - In-roosts are allowed to perform sharing food and
grooming (no other social activity has been
modeled). - In one simulation tick ( 24 hours), two stages
- daily grooming and food sharing
- nightly hunting
- as in nature (Wilkinson 1990), 93 agents find
food - remaining 7 starve, unless helped from fellows
- No accumulation short-term consumption
- Infrequent lethal food scarcity (1.65 double
unsuccessful hunt p. animal p. year) . - Average lifetime around 10 years
26The Simulation Model (2)
- Each day, agents choose grooming partners from
roost - If starving, grooming partner is asked for help
- Non-cheater agents give help, if full (have had
good hunt) - Donor agents will give away blood for 6 hs of
their autonomy, giving 18 hs to recipients. - No direct retaliation victims of cheating die on
the spot.
27Reproductive Algorithm
- In nature
- Female bats give birth to one child per time
- Reproduce every 10 months.
- Newborns leave the roost when self-sufficient,
- but they are never found in isolation chances of
survival for a lone individual are extremely
scarce.
- In simulated experiments
- Individuals are identical at birth and sexless
- cloning every ten months, starting from the
twentieth month, - at each occurrence each agent has 50 probability
to clone - As opposed toclassic haystack models, roosts are
unit of selection and reproduction, like
individual organism - Roosts are formed when a critical mass (20
individuals) is reached. - Rationale Reproductive success more the
in-roosts, higher the number of new roosts.
28Experimental Conditions
- Control
- One-roost world
- Food-sharing always allowed
- Reproduction is possible
- Variable percentage of cheaters (never giving
help when asked, even if full unlike altruists,
they sustain no costs) - No retaliation
- Cheaters are expected to prosper, reducing the
efficiency of the system as a whole
- Experimental
- All previous conditions apply in
- Multi-roost world the same number of agents
distributed over a variable number of roosts. - Population growth by altruistic roost formation
- Lineage is followed
- If fitness of donors is higher than average,
then RAT proves more valid. - Otherwise, GST is preferable.
29Findings (1). Single Roosts
- Cheaters cause demographic catastrophes.
- No reciprocity emerges cheaters exploit others,
incurring neither retaliation nor isolation. - But cheating is self-defeating in the long run
- after exploiting altruistic in-roosts to death,
- cheaters are bound to die.
- Graph
- Single roost with 300 agents for 20000 ticks.
Red population Dark Blue n. of roosts (x10)
Light Blue n. of cheaters (x10)
30Findings (2). Multi-Roost World
- If altruists survive cheaters, they will
repopulate the roost and produce new ones. - If no altruist survives cheaters, the roost will
extinguish. - After a critical period in which global fitness
declines - altruists take off
- number of roosts grows.
- Roosting matters!
- Roosts with cheaters disappear,
- But if any roost without cheaters appears, it
repopulate the world. -
- Graph
- 300 agents in 10 roosts for 8000 ticks. Red
population Dark Blue n. of roosts (x10) Light
Blue n. of cheaters (x10) - Above 10 cheaters
- Below 20 cheaters
31Findings (3). Donors Fitness
- Subtle measure
- A subset of population altruists dying old
(agents which reach 10 years age are removed from
simulation). - By tracking their descendants, the correlation
between number of helps and size of offspring can
be checked. - In a set of 100 simulations,
- with 10 roosts 30 agents each,
- 10 cheaters,
- 5000 ticks,
- agents that lived to the maximum age were
extracted, keeping track of donations and number
of agents in the lineage up to the simulation
end. - A very low factor (0.07) of positive correlation
between these measures was found. - No linear relation between number of donations in
life and lineage size!
32Discussion
- Our findings support Wilkinsons
- Altruism reduces mortality even one single
cheater may lead the roost to extinction. - Cheaters survive longer than altruists but are
self-defeating in the long run. - What about roaming cheaters? In nature, newcomers
find hard to be accepted by in-roosts an
entrance fee must have co-evolved to protect
altruists.
33- Mediatori Cognitivi del
- Comportamento Altruistico
34The Problem
- If the rationale of altruism is reciprocity
- How tell that current recipients will be future
donors? - Which mental construct behind reciprocity?
- Aims of the present work
- Model motivations as one main aspect of
cognition. - Observe their impact on altruism.
35Why Bother With Motivations?
- Motivations are usually overlooked.
- Theories of intelligent or rational action
emphasise the role of (limited) knowledge (Simon,
Kahneman and Tversky, etc.). - Evolutionary theory of mind stresses the
representational side of cognition. - In AI and agent systems, where autonomous systems
are constructed for task execution, goals as
sources and guide of action are acknowledged. - Motivation is here meant to account for the
strength of goals (their energetic component).
36Two Altruistic Algorithms
- Simple, or sub-cognitive
- agents apply routines under given conditions.
- Smart, or quasi-cognitive
- agents execute actions to achieve their goals.
37Simple and Smart Vampires
- Simple production rule
- Taking an external condition as input.
- Giving an action as output.
- Smart endowed with a social norm
- Taking an external condition as input.
- Giving a goal of variable force as output.
- Which is better, and when?
38First Study
- Control condition
- If satiated, agents will give away blood for 6 hs
of their autonomy, giving 18 hs to recipients. - Otherwise help is denied.
- Exp. condition
- Agents have goals
- survival and
- normative (give help).
- with variable strength.
- Five patterns of goal relationships emerge
- NG is null cheaters.
- SG is null martyrs.
- Gs are equal fair.
- NG is stronger generous.
- SG is stronger prudent (simple-like).
39Effetti della reciprocazione
- Dotando gli agenti della capacità di
riconoscimento individuale, conferiamo loro la
possibilità di non essere sfruttati dagli egoisti - Questo meccanismo non è sufficiente per
determinare un cambiamento nelle prestazioni
della popolazione
40Che cosaltro?
- Uneuristica per il cambiamento degli scopi
- La dinamica degli scopi è un aspetto fondamentale
della cognizione (Conte, 2000) In base alle
conoscenze possedute, gli scopi possono essere
generati o abbandonati, per effetto di un
cambiamento del loro valore
41Dynamic Smart Vampires
- Goal-dynamics an essential aspect of cognition
(Conte, 2000) - Based on beliefs, goals are generated,
interrupted, dropped etc. as an effect of value
change. - How does goal value change?
- In our simulations, NG
- Grows with donations received
- Decreases with unreciprocated donations
- Essentially, keeping constant for simplicity SG,
the strategy played by an agent is caused by the
dynamics of its NG.
42Findings (1) Strategies Emerge
- With 10 roosts of 15 dynamic smart agents each
(same conditions as in previous experiment),
starting prudent and cheaters, 40 ys (4 gen.) - Strategies differentiate
- Altruistic ones being fitter than cheating,
- Cheating is kept inoffensive (never grows even
when cheaters are a majority) - Difference increases with inheritance of
goal-value.
43Findings (2). Dominance of Martyrdom
- Martyrdom is dominant, because it is
self-reinforcing - if donations
- increase, NG grows ad libitum.
- decrease, NG cannot lower below a given
threshold. - with an upper limit,
- it behaves like other straegies.
- population varies periodically.
44Findings (3). Initial Strategy Does Not Matter
- Findings are stable while initialising
simulations with different strategies - The most altruistic strategies are always
dominant - Graph
- Above all strategies present at the beginning of
simulation - Below martyrs cheaters at start
45Findings (4). Retaliation Severity Matters
- With more severe retaliation (debtors are denied
help until credits are extinguished) - Population extinguishes
- Graph
- Above all strategies present at the beginning of
simulation - Below prudents cheaters at start
46Findings (5). Controlling cheaters
- Smart agents can survive high percentages of
cheaters - Simple agents get usually extinct with 60
cheaters, - While a population starting with 40 martyrs and
60 cheaters reaches 40 ys - Graph
- Above simple agents, 60 cheaters
- Below martyrs cheaters at start
47Advantages of Present Study
- Reduce arbitrariness of multi-parametered
simulations. - Model is anchored to real data.
- Increase plausibility of adaptive heuristics
- Unlike stupid adaptive agents, which
- Imitate fittest behaviour (how tell?)
- Imitate frequent behaviour (how tell global
frequency?) - Dynamic smart agents are modified by the effects
of others actions on themselves.
48What We Have Learned
- Trade-off between reciprocity and altruism
- retaliation reduces donations occurrence
- but, it encourages reciprocity (essential for
altruism). - Mechanisms ensuring reciprocity (retaliation)
ought to be mild. - Flexible intelligence contributes to altruism
- Does it mean vampires are smart? Probably not.
- But altruistic behaviour can be learned by
goal-based systems in a rather plausible way.