Definizione del - PowerPoint PPT Presentation

About This Presentation
Title:

Definizione del

Description:

Definizione del comportamento pro-sociale Overview Definizione del comportamento pro-sociale L'altruismo come dilemma sociale Un esempio etologico: i pipistrelli ... – PowerPoint PPT presentation

Number of Views:99
Avg rating:3.0/5.0
Slides: 49
Provided by: genn155
Category:

less

Transcript and Presenter's Notes

Title: Definizione del


1
  • Definizione del
  • comportamento pro-sociale

2
Overview
  • Definizione del comportamento pro-sociale
  • L'altruismo come dilemma sociale
  • Un esempio etologico i pipistrelli vampiro
  • l'utilità di un'analisi cross-metodologica
  • Cooperazione e gruppi
  • Un modello multi agente per l'evoluzione della
    cooperazione
  • I mediatori cognitivi del comportamento
    pro-sociale
  • implementazione di un sistema (quasi)cognitivo
    per lo studio dell'altruismo

3
Il comportamento altruistico
  • Unazione altruistica
  • comporta un costo (c) per lindividuo che la pone
    in atto
  • produce un beneficio (b) per un altro individuo
  • b gt c gt 0
  • Viene eseguita e/o replicata in ragione di tale
    beneficio (effettivo o rappresentato)

4
Meccanismi causali
  • Funzione adattativa

5
Meccanismi causali
  • Funzione adattativa
  • Rappresentazioni
  • mentali

6
Interazione strategica
  • Dilemma del Prigioniero
  • T gt R gt P gt S
  • 2R gt T S

7
Interazione strategica
  • Dilemma del Prigioniero
  • T gt R gt P gt S gt b gt (b c) gt 0 gt c
  • 2R gt T S gt 2(b c) gt (b c)
  • Applicato al caso del comportamento altruistico
  • T b R (b c) P 0 S c.

8
L'evoluzione della cooperazione
  • Quando si considera il comportamento altruistico
    come il prodotto di una funzione adattativa, per
    giustificare l'evoluzione della cooperazione
    vengono solitamente utilizzati tre ordini di
    fattori
  • 1. Parentela (kin selection, Hamilton 1964) la
    stabilità evolutiva di un comportamento
    altruistico è funzione del grado di parentela
    degli organismi considerati.
  • r gt b/c
  • r 1/2
  • r b/2 .

9
L'evoluzione della cooperazione
  • Quando si considera il comportamento altruistico
    come il prodotto di una funzione adattativa, per
    giustificare l'evoluzione della cooperazione
    vengono solitamente utilizzati tre ordini di
    fattori
  • 2. Reciprocazione (reciprocal altruism, Trivers
    1971) la teoria dell'altruismo reciproco
    condiziona l'evoluzione della cooperazione alla
    possibilità che un atto altruistico venga
    restituito (probabilità di due altruisti di
    reincontrarsi).
  • Tit-For-Tat metafora evoluzionistica
    dell'altruismo reciproco.

10
L'evoluzione della cooperazione
  • Quando si considera il comportamento altruistico
    come il prodotto di una funzione adattativa, per
    giustificare l'evoluzione della cooperazione
    vengono solitamente utilizzati tre ordini di
    fattori
  • 3. Gruppi (group selection, Wilson Sober 1994)
    in uno scenario in cui siano presenti più
    gruppi, ognuno contenente percentuali differenti
    di altruisti, un processo di selezione
    inter-gruppo tenderebbe a preferire quelli nei
    quali il gene altruista è presente in percentuale
    maggiore.

11
  • Vampire Bats

12
Altruism In Nature
  • In nature, examples of altruism abound (cfr.
    Brembs, 1996).
  • Inter-specific mutualism (Leimar and Axén, 1993).
  • Predator inspector in shoaling fish (different
    individuals swim towards the predator, gathering
    information about his location and his current
    motivational state (Milinski et al., 1990).
  • Among mammals,
  • blood-sharing in vampire bats (Wilkinson, 1984)
  • many controversial examples among primates.

13
Ethological Data about Bats
  • The species of vampires studied by Wilkinson
    lives in Central America, in small groups sharing
    cavity of trees (roost), where animals reproduce
    and perform social activities (nursing, grooming
    and sharing food)
  • Each night vampires go out hunting (finding
    herbivores to suck blood from)
  • about 7 hunters find no prey,
  • survive thanks to luckier fellows regurgitating a
    portion of food ingested
  • This behavior "depends equally and independently
    on degree of relatedness and an index of
    opportunity for reciprocation (Wilkinson, 1984).

14
The economy of food-sharing
  • Un pasto garantisce ai pipistrelli 60h di
    autonomia.
  • Il cibo donato, quantificato in base alla
    percentuale di peso corporeo perso dall'animale,
    avrà un'utilità marginale differente (h di
    autonomia) per chi lo riceve.
  • Un atto di food-sharing avrà l'effetto di
    conferire ad un conspecifico le energie
    necessarie per tornare a cacciare.

15
Vantaggio evolutivo del food-sharing
  • Numero fallimenti consecutivi nel procacciarsi il
    cibo in un anno 1,63.
  • Vantaggio evolutivo del food-sharing tasso di
    mortalità annua ridotto dal 82 al 24.

16
Why Bother with Vampires?
  • We are not interested in sociobiological debate
    per se.
  • Aims Model altruism and reciprocity at an
    abstract level.
  • Using real data for setting parameters values in
    a non arbitrary way.
  • Vampire bats offer real data about altruism as
    strongly interdependent with survival

17
  • Cooperazione Gruppi

18
The Problem in Nature
  • Vampire bats altruism (Wilkinson, 1984)
  • If successful, hunters regurgitate in favour of
    unlucky fellows
  • Survival rate
  • rises up to 80 of the initial population,
  • as opposed to 20 without altruism.
  • Why?
  • Kin selection? Not quite
  • Low average rate of relatedness among individuals
    living in the same roosts (around 6).
  • Reciprocal altruism? Perhaps. But
  • Simulations supporting group selection theory
    have recently been run (see Paolucci et al.,
    2003).

19
Reciprocal Altruism Theory
  • Direct version donor receives help from current
    recipient.
  • Indirect version donor receives help from
    someone else reciprocity circulates in the
    group, increasing donors' fitness.
  • Circularity makes reciprocity fragile (cheaters
    and noise).
  • Why self-interested agents participate in
    indirect reciprocity? Altruists do not aim at
    reciprocity, nor calculate its probability.
  • If altruism spreads, donors (offspring) are
    reciprocated.
  • Altruistic acts increase donors' fitness.
  • Reciprocity emergent effect of altruism.

20
Group Selection Theory
  • Groups are units of selection and reproduction
    (Williams, 1971 Sober and Wilson, 1999), which
    compete on the same evolutionary stage
  • groups with adaptive habits produce new offspring
    groups
  • groups missing adaptive habits decline till
    desegregation or extinction.
  • Haystack models between-group advantage of
    cooperation Vs within-group advantage of
    defection.
  • asexual reproduction with inheritance.
  • new groups are formed either randomly or
    nonrandomly
  • Altruism evolves (Maynard Smith, 1964 Cohen and
    Eshel, 1976) with nonrandom matching processes
    (altruists are likely to be matched with
    altruists)
  • Harsch controversy on GST (Palmer, 2002 review of
    Field's 2001), due to collectivist reading.

21
Haystack Models
  • Gli haystak models sono disegnati per studiare le
    circostanze in cui il vantaggio della defezione
    per gli individui può essere compensato (o
    superato) dal vantaggio della cooperazione in un
    processo di selezione fra gruppi.
  • L'algoritmo di un haystack model è suddiviso in
    due fasi
  • reproductive phase ogni individuo nella
    popolazione --divisa in gruppi-- si riproduce
    asessualmente, generando una copia esatta di se
    stesso.
  • dispersal phase gli individui vengono isolati e
    riasseganti casualmente ad un nuovo gruppo.

22
Haystack Models
  • I componenti di un gruppo possono essere
    strategicamente cooperativi o non cooperativi.
  • La formazione di gruppi nella dispersal phase
    viene definita nonassortativa quando la
    distribuzione delle strategie all'interno del mio
    gruppo è indipendente dalla mia strategia.
  • In un haystack model, se i raggruppamenti sono
    non assortativi ed il tasso di riproduzione è
    determinato secondo i payoff di un Prisoner's
    Dilemma, l'unico risultato possibile è una
    popolazione composta esclusivamente da strategie
    non cooperative.

23
The First Place Challenge
  • Altruists must be more likely to join groups
    containing high numbers of altruists (Cooper and
    Wallace, 2001). How? Typical question posed by
    many authors e.g.
  • So even though a tribe full of selfless people
    would prevail over a tribe full of selfish
    people, it is hard to see how a tribe would get
    full of selfless people in the first place. ...
    Even if you magically intervened and implanted
    sympathetic genes in 90 percent of the
    population, these would steadily lose out to
    their less ennobling rivals. (Wright 1994, page
    187)
  • Selfless groups would be perpetually undermined
    by the selfishness of their individuals. (Ridley
    1997).
  • Any reasonable answer?

24
Aims Of The Present Work
  • Test
  • RAT (donations enhance donors fitness) and
  • GST (donations enhance group fitness)
  • Wilikinson's analyzes all-cooperators vs
    all-defectors.
  • What happens in intermediate conditions?
  • Which is the minimal share of altruist?
  • Does increase of survival rate correspond to
    increase donors' fitness, or is it redistributed
    over entire population? if so, are individual
    donors always refunded or do they sustain a share
    of the costs of redistribution?
  • Latter question crucial if donors are not
    reciprocated in person or along their future
    generations, reason to question reciprocal
    altruism interpretation, and look for concurrent
    explanation.

25
The Simulation Model (1)
  • Roost is a social space containing any number of
    bats.
  • In-roosts are allowed to perform sharing food and
    grooming (no other social activity has been
    modeled).
  • In one simulation tick ( 24 hours), two stages
  • daily grooming and food sharing
  • nightly hunting
  • as in nature (Wilkinson 1990), 93 agents find
    food
  • remaining 7 starve, unless helped from fellows
  • No accumulation short-term consumption
  • Infrequent lethal food scarcity (1.65 double
    unsuccessful hunt p. animal p. year) .
  • Average lifetime around 10 years

26
The Simulation Model (2)
  • Each day, agents choose grooming partners from
    roost
  • If starving, grooming partner is asked for help
  • Non-cheater agents give help, if full (have had
    good hunt)
  • Donor agents will give away blood for 6 hs of
    their autonomy, giving 18 hs to recipients.
  • No direct retaliation victims of cheating die on
    the spot.

27
Reproductive Algorithm
  • In nature
  • Female bats give birth to one child per time
  • Reproduce every 10 months.
  • Newborns leave the roost when self-sufficient,
  • but they are never found in isolation chances of
    survival for a lone individual are extremely
    scarce.
  • In simulated experiments
  • Individuals are identical at birth and sexless
  • cloning every ten months, starting from the
    twentieth month,
  • at each occurrence each agent has 50 probability
    to clone
  • As opposed toclassic haystack models, roosts are
    unit of selection and reproduction, like
    individual organism
  • Roosts are formed when a critical mass (20
    individuals) is reached.
  • Rationale Reproductive success more the
    in-roosts, higher the number of new roosts.

28
Experimental Conditions
  • Control
  • One-roost world
  • Food-sharing always allowed
  • Reproduction is possible
  • Variable percentage of cheaters (never giving
    help when asked, even if full unlike altruists,
    they sustain no costs)
  • No retaliation
  • Cheaters are expected to prosper, reducing the
    efficiency of the system as a whole
  • Experimental
  • All previous conditions apply in
  • Multi-roost world the same number of agents
    distributed over a variable number of roosts.
  • Population growth by altruistic roost formation
  • Lineage is followed
  • If fitness of donors is higher than average,
    then RAT proves more valid.
  • Otherwise, GST is preferable.

29
Findings (1). Single Roosts
  • Cheaters cause demographic catastrophes.
  • No reciprocity emerges cheaters exploit others,
    incurring neither retaliation nor isolation.
  • But cheating is self-defeating in the long run
  • after exploiting altruistic in-roosts to death,
  • cheaters are bound to die.
  • Graph
  • Single roost with 300 agents for 20000 ticks.
    Red population Dark Blue n. of roosts (x10)
    Light Blue n. of cheaters (x10)

30
Findings (2). Multi-Roost World
  • If altruists survive cheaters, they will
    repopulate the roost and produce new ones.
  • If no altruist survives cheaters, the roost will
    extinguish.
  • After a critical period in which global fitness
    declines
  • altruists take off
  • number of roosts grows.
  • Roosting matters!
  • Roosts with cheaters disappear,
  • But if any roost without cheaters appears, it
    repopulate the world.
  • Graph
  • 300 agents in 10 roosts for 8000 ticks. Red
    population Dark Blue n. of roosts (x10) Light
    Blue n. of cheaters (x10)
  • Above 10 cheaters
  • Below 20 cheaters

31
Findings (3). Donors Fitness
  • Subtle measure
  • A subset of population altruists dying old
    (agents which reach 10 years age are removed from
    simulation).
  • By tracking their descendants, the correlation
    between number of helps and size of offspring can
    be checked.
  • In a set of 100 simulations,
  • with 10 roosts 30 agents each,
  • 10 cheaters,
  • 5000 ticks,
  • agents that lived to the maximum age were
    extracted, keeping track of donations and number
    of agents in the lineage up to the simulation
    end.
  • A very low factor (0.07) of positive correlation
    between these measures was found.
  • No linear relation between number of donations in
    life and lineage size!

32
Discussion
  • Our findings support Wilkinsons
  • Altruism reduces mortality even one single
    cheater may lead the roost to extinction.
  • Cheaters survive longer than altruists but are
    self-defeating in the long run.
  • What about roaming cheaters? In nature, newcomers
    find hard to be accepted by in-roosts an
    entrance fee must have co-evolved to protect
    altruists.

33
  • Mediatori Cognitivi del
  • Comportamento Altruistico

34
The Problem
  • If the rationale of altruism is reciprocity
  • How tell that current recipients will be future
    donors?
  • Which mental construct behind reciprocity?
  • Aims of the present work
  • Model motivations as one main aspect of
    cognition.
  • Observe their impact on altruism.

35
Why Bother With Motivations?
  • Motivations are usually overlooked.
  • Theories of intelligent or rational action
    emphasise the role of (limited) knowledge (Simon,
    Kahneman and Tversky, etc.).
  • Evolutionary theory of mind stresses the
    representational side of cognition.
  • In AI and agent systems, where autonomous systems
    are constructed for task execution, goals as
    sources and guide of action are acknowledged.
  • Motivation is here meant to account for the
    strength of goals (their energetic component).

36
Two Altruistic Algorithms
  • Simple, or sub-cognitive
  • agents apply routines under given conditions.
  • Smart, or quasi-cognitive
  • agents execute actions to achieve their goals.

37
Simple and Smart Vampires
  • Simple production rule
  • Taking an external condition as input.
  • Giving an action as output.
  • Smart endowed with a social norm
  • Taking an external condition as input.
  • Giving a goal of variable force as output.
  • Which is better, and when?

38
First Study
  • Control condition
  • If satiated, agents will give away blood for 6 hs
    of their autonomy, giving 18 hs to recipients.
  • Otherwise help is denied.
  • Exp. condition
  • Agents have goals
  • survival and
  • normative (give help).
  • with variable strength.
  • Five patterns of goal relationships emerge
  • NG is null cheaters.
  • SG is null martyrs.
  • Gs are equal fair.
  • NG is stronger generous.
  • SG is stronger prudent (simple-like).

39
Effetti della reciprocazione
  • Dotando gli agenti della capacità di
    riconoscimento individuale, conferiamo loro la
    possibilità di non essere sfruttati dagli egoisti
  • Questo meccanismo non è sufficiente per
    determinare un cambiamento nelle prestazioni
    della popolazione

40
Che cosaltro?
  • Uneuristica per il cambiamento degli scopi
  • La dinamica degli scopi è un aspetto fondamentale
    della cognizione (Conte, 2000) In base alle
    conoscenze possedute, gli scopi possono essere
    generati o abbandonati, per effetto di un
    cambiamento del loro valore

41
Dynamic Smart Vampires
  • Goal-dynamics an essential aspect of cognition
    (Conte, 2000)
  • Based on beliefs, goals are generated,
    interrupted, dropped etc. as an effect of value
    change.
  • How does goal value change?
  • In our simulations, NG
  • Grows with donations received
  • Decreases with unreciprocated donations
  • Essentially, keeping constant for simplicity SG,
    the strategy played by an agent is caused by the
    dynamics of its NG.

42
Findings (1) Strategies Emerge
  • With 10 roosts of 15 dynamic smart agents each
    (same conditions as in previous experiment),
    starting prudent and cheaters, 40 ys (4 gen.)
  • Strategies differentiate
  • Altruistic ones being fitter than cheating,
  • Cheating is kept inoffensive (never grows even
    when cheaters are a majority)
  • Difference increases with inheritance of
    goal-value.

43
Findings (2). Dominance of Martyrdom
  • Martyrdom is dominant, because it is
    self-reinforcing
  • if donations
  • increase, NG grows ad libitum.
  • decrease, NG cannot lower below a given
    threshold.
  • with an upper limit,
  • it behaves like other straegies.
  • population varies periodically.

44
Findings (3). Initial Strategy Does Not Matter
  • Findings are stable while initialising
    simulations with different strategies
  • The most altruistic strategies are always
    dominant
  • Graph
  • Above all strategies present at the beginning of
    simulation
  • Below martyrs cheaters at start

45
Findings (4). Retaliation Severity Matters
  • With more severe retaliation (debtors are denied
    help until credits are extinguished)
  • Population extinguishes
  • Graph
  • Above all strategies present at the beginning of
    simulation
  • Below prudents cheaters at start

46
Findings (5). Controlling cheaters
  • Smart agents can survive high percentages of
    cheaters
  • Simple agents get usually extinct with 60
    cheaters,
  • While a population starting with 40 martyrs and
    60 cheaters reaches 40 ys
  • Graph
  • Above simple agents, 60 cheaters
  • Below martyrs cheaters at start

47
Advantages of Present Study
  • Reduce arbitrariness of multi-parametered
    simulations.
  • Model is anchored to real data.
  • Increase plausibility of adaptive heuristics
  • Unlike stupid adaptive agents, which
  • Imitate fittest behaviour (how tell?)
  • Imitate frequent behaviour (how tell global
    frequency?)
  • Dynamic smart agents are modified by the effects
    of others actions on themselves.

48
What We Have Learned
  • Trade-off between reciprocity and altruism
  • retaliation reduces donations occurrence
  • but, it encourages reciprocity (essential for
    altruism).
  • Mechanisms ensuring reciprocity (retaliation)
    ought to be mild.
  • Flexible intelligence contributes to altruism
  • Does it mean vampires are smart? Probably not.
  • But altruistic behaviour can be learned by
    goal-based systems in a rather plausible way.
Write a Comment
User Comments (0)
About PowerShow.com