Title: 5-Minute Check on Activity 3-3
15-Minute Check on Activity 3-3
- Examine the following graphs and determine how
many solutions - Solutions a) b)
c) - Which of the graphs above are consistent?
- Solve the systems of equations
- y 2x 1y 3x 2
One None
Infinite
Only a)
3x 2 y 2x 1 3x 2 2x 1 x 2 1
x 3 and y 3(3) 2 7
Click the mouse button or press the Space Bar to
display the answers.
2Activity 3 - 4
3Objectives
- Solve linear inequalities in one variable
numerically and graphically - Use properties of inequalities to solve linear
inequalities in one variable algebraically - Solve compound inequalities in one variable
algebraically and graphically - Use interval notation to represent a set of real
numbers by an inequality
4Vocabulary
- Inequality a relationship in which one side can
be greater or less than the other (equal as well) - Compound inequality an inequality involving to
inequality signs (like 3 lt x lt 9) - Closed interval end points are included ( )
- Open interval end points are not included ( gt lt
)
5English Phases to Math Symbols
Math Symbol English Phrases English Phrases English Phrases
At least No less than Greater than or equal to
gt More than Greater than
lt Fewer than Less than
No more than At most Less than or equal to
Exactly Equals Is
x gt 10 x lt 10 x 10 x 10
- x is greater than 10
- x is less than 10
- x is at least 10
- x is at most 10
6Solving Inequalities
- Solving an inequality in one variable is the
process of determining the values of the variable
that make the inequality a true statement. These
values are called the solutions of the
inequality. - If we had the solution to a pair of equalities
(lines from previous lessons), then it was the
point of intersection. With inequalities, if we
have a solution, then we have a region of lots of
points that satisfy the inequalities. - We will use the same properties of Equality to
solve the inequalities algebraically.
7Solving Inequalities
x 3 3 lt 5 3 ? x lt 8 x 6 6 lt 10
6 ? x lt 4 x lt 10 6 ? x lt
4 7 lt x ? x gt 7
- Any action you apply to one side of an inequality
must be applied to the other side to keep the
inequality in balance - We can add the same number to both sides
- We can subtract the same number from both sides
- We can simplify one or both sides
- We cannot interchange the sides (we flip the
inequality!)
8How Long Can You Live?
- Life expectancy in the United States is steadily
increasing, and the number of Americans aged 100
or older will exceed 850,000 by the middle of
this century. Medical advancements have been a
primary reason for Americans living longer.
Another factor has been the increased awareness
of maintaining a healthy lifestyle.
9How Long Can You Live?
- The life expectancies at birth for women and men
born after 1975 can be modeled by the following
functions - W(x) 0.106x 77.01
- M(x) 0.200x 68.94
- where W(x) represents the life expectancy for
women, M(x) represents the life expectancy for
men, and x represents the number of years since
1975 that the person was born. That is, x 0
corresponds to the year 1975, x 5 corresponds
to 1980, and so forth.
10How Long Can You Live? (cont)
- The life expectancies at birth for women and men
born after 1975 can be modeled by the following
functions - W(x) 0.106x 77.01
- M(x) 0.200x 68.94
- Complete the following table
1975 1980 1985 1990 1995 2000
X, years since 75 0 5 10 15 20 25
W(x)
M(x)
77.01 77.54 78.07 78.60 79.13 79.66
68.94 69.94 70.94 71.94 72.94 73.94
11How Long Can You Live? (cont)
- The life expectancies at birth for women and men
born after 1975 can be modeled by the following
functions - W(x) 0.106x 77.01
- M(x) 0.200x 68.94
- When will men overtake women in life
expectancies? When will M(x) gt W(x)?
We can solve it one of three ways 1) Using a
table in our calculator 2) Using the graphing
capability of our calculator 3) Solve it
algebraically
12How Long Can You Live? - Table
- The life expectancies at birth for women and men
born after 1975 can be modeled by the following
functions - W(x) 0.106x 77.01
- M(x) 0.200x 68.94
- When will men overtake women in life
expectancies? When will M(x) gt W(x)?
Table
X Y1 Y2
83 85.808 85.54
84 85.914 85.74
85 86.02 85.94
86 86.126 86.14
87 86.232 86.34
13How Long Can You Live? - Graph
- The life expectancies at birth for women and men
born after 1975 can be modeled by the following
functions - W(x) 0.106x 77.01
- M(x) 0.200x 68.94
- When will men overtake women in life
expectancies? When will M(x) gt W(x)?
Graph
14How Long Can You Live? - Alg
- The life expectancies at birth for women and men
born after 1975 can be modeled by the following
functions - W(x) 0.106x 77.01
- M(x) 0.200x 68.94
- When will men overtake women in life
expectancies? When will M(x) gt W(x)?
Algebraically
M(x) gt W(x) 0.200x 68.94 gt
0.106x 77.01 Substitute
0.200x gt 0.106x 8.07 -
68.94 0.094x gt 8.07
- 0.106x x
gt 85.852 ? 0.094
15Algebraic Properties
- Given a lt b thenAddition and
Subtraction POE keeps the inequality true (a ?
k lt b ? k)Multiplication or Division by a
positive number keeps the inequality true (ka lt
kb, if k gt 0)Multiplication or Division by a
negative number reverses the inequality (ka gt
kb, if k lt 0)
16Algebraic Properties Examples
- If x 2 gt 9
- If x 6 8
- If 6x lt 24
- If ½x 3
- If -y gt 5
then x 2 2 gt 9 2 x gt
11 then x 6 6 8 - 6 x
2 then (6x) / 6 lt (24/6) x lt
4 then 2 ? ½x 2?3 x 6 then
-1?-y gt -1?5 y lt -5
17Compound Inequalities
- When a variable is between two numbers, then it
is called a compound inequality - Remember the English translations!
- Examine the following table
Statement in English Compound Inequality
X is greater than or equal to 10, but less than 20 10 x lt 20
X is greater than 10 and less than or equal to 20 10 lt x 20
X is from 10 to 20 inclusive 10 x 20
18Compound Inequalities Examples
- Solve the following compound inequalities - 4
lt 3x 5 11 1 lt 3x 2 lt 4
- 5 - 5 - 5 -9 lt 3x
6 ?3 ?3 ?3 -3 lt x 2
2 2 2 3 lt 3x lt 6
?3 ?3 ?3 1 lt x lt 2
19Interval Notation
- Closed Interval denoted by means the
endpoints are included - Open Interval denoted by ( ) means the
endpoints are not included - Half open or Half closed denoted by ( or )
means one endpoint is included and the other is
not (base on open and closed above) - Unbounded denoted by - ? or ? means that an
interval can go as low as negative infinity (- ?)
or that an interval can go as high as positive
infinity (?)
20Interval Notation Examples
- Write the inequalities in interval notation 1 lt
x lt 2 -9 lt x lt 12 x 3 - Write the interval notations as an inequality
-2 , 4) (2, 8)
(5, ?)
(1, 2)
(-9, 12)
(-?, 3
-2 x lt 4
2 lt x lt 8
5 lt x
21Inequalities and Number Lines
- x gt 4
- x lt 3
- x -1
- x 0
- x 2
(4, ?)
(-?, 3)
-1, ?)
(-?, 0
2, 2
22Summary and Homework
- Summary
- The solution set of an inequality in one variable
is the set of all values of the variable that
satisfy the inequality. - The direction of an inequality is not changed
when - Same quantity is added to or subtracted from both
sides of the inequality, or - Both sides of an inequality are multiplied or
divided by the same positive number. - Homework
- pg 330 335 4-8, 19, 20