Title: disordini genomici strutturali e submicroscopici
1disordini genomici strutturali e submicroscopici
- Vincenzo Nigro
- Dipartimento di Patologia Generale
- Seconda Università degli Studi di Napoli
Telethon Institute of Genetics and Medicine
(TIGEM)
2portatori di un rischio riproduttivo indipendente
dal partner
- portatori di una traslocazione cromosomica
bilanciata (reciproca) - scambio di materiale genetico tra cromosomi non
omologhi - non vi è modificazione della dose genica
- frequenza 1/520 nati
- fenotipicamente normale
3traslocazioni bilanciate
- lo scambio di segmenti cromosomici avviene senza
perdita di alcuna informazione genetica - nessuna regione cromosomica è assente, ma è solo
trasferita su un altro cromosoma - ma un gene di fusione tra due geni altrimenti
separati, un evento che è comune nelle cellule
maligne
4traslocazioni bilanciate (meiosi e
fertilizzazione)
Traslocazione bilanciata
Segregazionealternata
Normale
Traslocazione
Segregazioneadiacente 1
Traslocazione
Trisomia
Segregazioneadiacente 2
Trisomia
La formazione di tetravalenti aiuta a capire
solo con la segregazione alternata si formano
gameti normali o con traslocazione bilanciata,
mentre le segregazioni adiacenti 1 e 2 portano
alla traslocazione sbilanciata o alla trisomia
5traslocazioni robertsoniane (rob)
- coinvolgono i cromosomi acrocentrici 13, 14, 15,
21 e 22 - nessuna regione cromosomica è assente, perché
questi contengono un braccio corto privo di geni
che può risultare perduto con la fusione dei
bracci q di due cromosomi acrocentrici - La più frequente traslocazione Robertsoniana è la
rob(13q14q) che rappresenta il 75 di tutte le
rob - segue poi la rob(14q21q) e la rob(21q21q)
- si formano in genere durante la meiosi femminile
e comportano infertilità maschile o abortività
ripetuta.
6Percentuale alla nascita di figli con cariotipo
sbilanciato da genitori con traslocazione
robertsoniana
- t(1314) MF 1
- t(1421) F 15 M 2
- t(2122) F 10 M 5
- t(2121) MF 100
7Traslocazione sbilanciata
- maggiori sono le dimensioni cromosomiche, minore
è la possibilità di una gravidanza a termine - minori sono le dimensioni, maggiore è il rischio
di un feto malformato - Sesso del genitore donnagtuomo (gli spermatozoi
hanno il 7.5 di difetti contro l1 degli
oociti, ma sono selezionati) - Il rischio aumenta se il difetto è stato
accertato a partire da un figlio precedente con
cariotipo sbilanciato
8rischio alla nascita di figli con cariotipo
sbilanciato
- Se non vi sono stati casi in famiglia e la madre
è eterozigote per una traslocazione reciproca il
rischio è il 7 - Se non vi sono stati casi in famiglia e il padre
è eterozigote per una traslocazione reciproca il
rischio è il 3 - Se vi sono stati casi di traslocazioni
sbilanciate in famiglia e la madre è eterozigote
il rischio è il 14 - Se vi sono stati casi di traslocazioni
sbilanciate in famiglia e il padre è eterozigote
il rischio è l8
9inversioni
- Le inversioni sono rare (meno di 1 caso su 1000)
e a volte difficili da mettere in evidenza - Possono essere semplici quando comprendono due
punti di rottura su di un singolo cromosoma - Sono pericentriche quando il segmento invertito
contiene il centromero (es 46, XX inv(3)p25q21) - Le inversioni pericentriche dei cromosomi 1, 9,
16 e Y sono eteromorfismi citogenetici di normale
riscontro in soggetti sani - Le inversioni sono dette paracentriche se
confinate ad uno dei due bracci (es 46,XX.
Inv(11)q21q23) - Leterozigote per uninversione è un soggetto
normale.
10coppia con familiarità per anomalie cromosomiche
è indicazione allesecuzione di un cariotipo
fetale e lestensione dellindagine ai parenti
- traslocazioni X-autosoma
- maschi sterili, femmine inattivano la X normale
- traslocazioni robertsoniane
- non 21 60 cariotipo bilanciato
- 21 15 rischio di Down, se è eterozigote la madre
1 se è eterozigote il padre - inversioni
- pericentriche varianti dell1, 9, 16 e Y, in
altri casi il rischio è 5-10 - paracentriche, rischi inferiore allo 0.5
11donna eterozigote per una traslocazione
bilanciata X-autosoma
12(No Transcript)
13disordine genomico submicroscopico
- un disordine genomico submicroscopico è una
patologia causata da - acquisizione
- perdita
- alterazione
- di uno o più geni contigui le cui variazioni di
dosaggio possono produrre effetti fenotipici - La base molecolare è rappresentata da
riarrangiamenti genomici, quali duplicazioni,
delezioni, inversioni, senza alterazioni
apparenti del cariotipo (lt5Mb)
14dominanza e recessività
- in genetica, il carattere (o lallele) è
dominante se leterozigote è indistinguibile
dallomozigote - in medicina la malattia è
- dominante fenotipo clinicamente manifesto con 1
allele mutato - recessiva fenotipo clinicamente manifesto con 2
alleli mutati (omozigote o eterozigote composto)
15La maggior parte dei geni autosomici si trova
nella condizione A o C il dosaggio genico
critico è lt50. In tal caso, si osserva un
fenotipo patologico solo se entrambi gli alleli
sono colpiti I geni autosomici responsabili della
patogenesi dei disordini genomici si trovano
nella condizione B o D si osserva un fenotipo
già in eterozigosi per aploinsufficienza. Spesso
anche un dosaggio genico aumentato gtgt100 può
determinare una patologia
16aploinsufficienza
- insufficiente quantità di prodotto genico causata
da una mutazione in eterozigosi - la mutazione è di tipo allele amorfo o ipomorfo
- colpisce geni per i quali il 50 di prodotto
genico non è abbastanza per garantirne la
funzione - spesso un dosaggio preciso è richiesto ai fattori
di trascrizione e alle molecole di segnale
espressi nel corso dello sviluppo
17In caso di delezioni del cromosoma X nei maschi
si osserva direttamente in fenotipo come sindrome
da geni contigui In caso di delezioni autosomiche
in eterozigosi, molto spesso il dosaggio
dimezzato non è causa di malattia. Quando si
osserva una sindrome da delezione, è risolutivo
trovare la stessa sindrome causata da una
mutazione puntiforme in uno solo dei geni. Se
questa non si trova, la sindrome esiste solo come
somma di più difetti.
18ACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCG
ACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCA
CACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACG
TAGGGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGCTCCCTG
AAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGT
GCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACAC
ACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACC
GCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGG
GCTCTCGATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAAC
AGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTA
GCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACAC
AGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTC
GAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTC
TCGATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCT
CCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTA
GCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGAT
ATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGA
CCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGA
TATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGA
CACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTC
CTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATAT
AGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTG
ACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATA
GCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACA
GCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCT
CGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATATAGCG
CTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCT
GACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTC
GCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTC
GCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAG
ACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGCTCC
CTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACC
GTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGAC
ACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACA
CCGCTCGAGACCTGACCTGAACGTGCTAGCTAGCTCCTCTCGAGACGTAG
GGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAA
CAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCT
AGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACA
CAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCT
CGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCT
CTCGATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAGC
TCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCT
AGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGA
TATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAG
ACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCG
ATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCG
ACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCT
CCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATA
TAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCT
GACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATAT
AGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACAC
AGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTC
TCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATATAGC
GCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACC
TGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCT
CGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCT
CGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGA
GACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGCTC
CCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGAC
ACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCG
ACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCA
CACCGCTCGAGACCTGACCTGACCGAGACGTAGGGCTCTCGATATAGCTC
GCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTC
GCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAG
ACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGCTCC
CTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACA
CGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGA
CACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCAC
ACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGT
AGGGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGA
AACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTG
CTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACA
CACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCG
CTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGCGAGACGT
AGGGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGA
AACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTG
CTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACA
CACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCG
CTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGG
CTCTCGATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACA
GCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAG
CTAGCTCCTCTCGAGACGCGAGACGTAGGGCTCTCGATATAGCTCGCGAC
ACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACA
CCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTA
GGGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAA
ACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGC
TAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACAC
ACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGC
TCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGC
TCTCGATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAG
CTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGC
TAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAG
ATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGA
GACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTC
GATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCC
GACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGC
TCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATAT
ATAGCGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGC
TCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTG
ACACGTGCTAGCTAGCTCCTCTCGACGAGACGTAGGGCTCTCGATATAGC
TCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGC
TCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCG
AGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGCT
CCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGA
CACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGC
GACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGC
ACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGAC
GTAGGGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGCTCCCT
GAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACACG
TGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACA
CACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACAC
CGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAG
GGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAA
CAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCT
AGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACA
CAGATATATAGCGGACGTAGGGCTCTCGATATAGCTCGCGACACACACAG
ATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGA
GATAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACAC
ACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACC
GCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGG
GCTCTCGATATAGCTCGCGACACACACAGATATATAGCGTAGGGCTCTCG
ATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCG
ACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCT
CCTCTCGACGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGAT
ATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGA
CCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGA
TATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGA
CACAGCTCGCACACCGCTCGAGACCTTAGCTAGCTCCTCTCGAGACGTAG
GGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAA
CAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCT
AGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACA
CAGATATATAGCGTAGGGCTCTCGATATAGCTCGCGACACACACAGATAT
ATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACC
TGACCTGACACGTGCTAGCTAGCTCCTCTCGACGAGACGTAGGGCTCTCG
ATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCG
ACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCT
CCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATA
TAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCT
TAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACAC
ACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGC
TCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGC
TCTCGATATAGCTCGCGACACACACAGATATATAGCGTAGGGCTCTCGAT
ATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGAC
ACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCC
TCTCGACGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATAT
ATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACC
TGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATA
TAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACA
CAGCTCGCACACCGCTCGAGACCTTAGCTAGCTCCTCTCGAGACGTAGGG
CTCTCGATATAGCTCGCGACACACACAGATATTATAGCTCGCGACACACA
CAGATATATAGCGTAGGGCTCTCGATATAGCTCGCGACACACACAGATAT
ATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACC
TGACCTGACACGTGCTAGCTAGCTCCTCTCGACGAGACGTAGGGCTCTCG
ATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCG
ACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCT
CCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATA
TAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCT
TAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACAC
ACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGC
TCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTTATAG
CTCGCGACACACACAGATATATAGCGTAGGGCTCTCGATATAGCTCGCGA
CACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCAC
ACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGACGAGA
CGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGCTCCC
TGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACAC
GTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGAC
ACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACA
CCGCTCGAGACCTTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATA
GCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACA
GCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCT
CGAGACGTAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATAT
ATAGCGGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATATA
GCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGATAGCT
AGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGA
TATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAG
ACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCG
ATATAGCTCGCGACACACACAGATATATAGCGTAGGGCTCTCGATATAGC
TCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGC
TCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCG
ACGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATATAGC
GCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACC
TGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCT
CGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCT
CGCACACCGCTCGAGACCTTAGCTAGCTCCTCTCGAGACGTAGGGCTCTC
GATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCC
GACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGC
TCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATAT
ATAGCGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGC
TCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTG
ACACGTGCTAGCTAGCTCCTCTCGACGAGACGTAGGGCTCTCGATATAGC
TCGCCTCGCGACACACACAGATATATAGCGTAGGGCTCTCGATATAGCTC
GCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTC
GCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAC
GAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGC
TCACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCG
CGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCG
CACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGA
CGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGCTCCC
TGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACAC
GTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGAC
ACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACA
CCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTA
GGGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAA
ACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGC
TAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACAC
ACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGC
TCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGC
TCTCGATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAG
CTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGC
TAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAG
ATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGA
GACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTC
GATATAGCTCGCGACACACACAGA
19ACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCG
ACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCA
CACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACG
TAGGGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGCTCCCTG
AAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGT
GCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACAC
ACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACC
GCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGG
GCTCTCGATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAAC
AGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTA
GCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACAC
AGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTC
GAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTC
TCGATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCT
CCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTA
GCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGAT
ATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGA
CCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGA
TATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGA
CACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTC
CTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATAT
AGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTG
ACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATA
GCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACA
GCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCT
CGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATATAGCG
CTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCT
GACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTC
GCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTC
GCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAG
ACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGCTCC
CTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACC
GTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGAC
ACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACA
CCGCTCGAGACCTGACCTGAACGTGCTAGCTAGCTCCTCTCGAGACGTAG
GGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAA
CAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCT
AGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACA
CAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCT
CGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCT
CTCGATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAGC
TCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCT
AGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGA
TATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAG
ACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCG
ATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCG
ACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCT
CCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATA
TAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCT
GACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATAT
AGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACAC
AGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTC
TCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATATAGC
GCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACC
TGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCT
CGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCT
CGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGA
GACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGCTC
CCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGAC
ACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCG
ACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCA
CACCGCTCGAGACCTGACCTGACCGAGACGTAGGGCTCTCGATATAGCTC
GCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTC
GCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAG
ACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGCTCC
CTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACA
CGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGA
CACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCAC
ACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGT
AGGGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGA
AACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTG
CTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACA
CACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCG
CTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGCGAGACGT
AGGGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGA
AACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTG
CTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACA
CACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCG
CTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGG
CTCTCGATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACA
GCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAG
CTAGCTCCTCTCGAGACGCGAGACGTAGGGCTCTCGATATAGCTCGCGAC
ACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACA
CCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTA
GGGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAA
ACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGC
TAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACAC
ACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGC
TCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGC
TCTCGATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAG
CTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGC
TAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAG
ATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGA
GACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTC
GATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCC
GACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGC
TCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATAT
ATAGCGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGC
TCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTG
ACACGTGCTAGCTAGCTCCTCTCGACGAGACGTAGGGCTCTCGATATAGC
TCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGC
TCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCG
AGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGCT
CCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGA
CACGTGCTAGCTAGCTCCTCTCGAGACTATATAGCGCTCCCTGAAACAGC
TCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACCGAGACGTAGG
GCTCTCGATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAAC
AGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTA
GCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACAC
AGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTC
GAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTC
TCGATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCT
CCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTA
GCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGAT
ATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGA
CCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGA
TATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGA
CACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTC
CTCTCGAGCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGAT
ATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGA
CCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGA
TATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGA
CACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTC
CTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATAT
AGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTG
ACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGCGAGACGTAGGGCTCT
CGATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTC
CGACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAG
CTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATA
TATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGAC
CTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGAT
ATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGAC
ACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCC
TCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATATA
GCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGA
CCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAG
CTCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAG
CTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTC
GAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGC
TCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTG
ACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCG
CGACACACACAGATATATAGCGTAGGGCTCTCGATATAGCTCGCGACACA
CACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCG
CTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGACGAGACGTA
GGGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAA
ACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGC
TAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACAC
ACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGC
TCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGC
TCTCGATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAG
CTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGC
TAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAG
ATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGA
GACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTC
GATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCC
GACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGC
TCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATAT
ATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACC
TGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATA
TAGCTCGCGACACACACAGATATATAGCGGACGTAGGGCTCTCGATATAG
CTCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAG
CTCGCACACCGCTCGAGATAGCTAGCTCCTCTCGAGACGTAGGGCTCTCG
ATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCG
ACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCT
CCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATA
TAGCGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGCT
CCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGA
CACGTGCTAGCTAGCTCCTCTCGACGAGACGTAGGGCTCTCGATATAGCT
CGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCT
CGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGA
GACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGCTC
CCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTTAGCTAGC
TCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATAT
ATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACC
TGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATA
TAGCTCGCGACACACACAGATATATAGCGTAGGGCTCTCGATATAGCTCG
CGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCG
CACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGACG
AGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGCT
CCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGA
CACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGC
GACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGC
ACACCGCTCGAGACCTTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGAT
ATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGAC
ACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCC
TCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATATA
GCGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGCTCC
CTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACA
CGTGCTAGCTAGCTCCTCTCGACGAGACGTAGGGCTCTCGATATAGCTCG
CGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCG
CACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGA
CGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGCTCCC
TGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTTAGCTAGCTC
CTCTCGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATTA
TAGCTCGCGACACACACAGATATATAGCGTAGGGCTCTCGATATAGCTCG
CGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCG
CACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGACG
AGACGTAGGGCTCTCGATATAGCTCGCGACACACACAGATATATAGCGCT
CCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCGAGACCTGACCTGA
CACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGATATAGCTCGC
GACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGC
ACACCGCTCGAGACCTTAGCTAGCTCCTCTCGAGACGTAGGGCTCTCGAT
ATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTCCGAC
ACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTAGCTCC
TCTCGAGACGTTATAGCTCGCGACACACACAGATATATAGCGTAGGGCTC
TCGATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCT
CCGACACAGCTCGCACACCGCTCGAGACCTGACCTGACACGTGCTAGCTA
GCTCCTCTCGACGAGACGTAGGGCTCTCGATATAGCTCGCGACACACACA
GATATATAGCGCTCCCTGAAACAGCTCCGACACAGCTCGCACACCGCTCG
AGACCTGACCTGACACGTGCTAGCTAGCTCCTCTCGAGACGTAGGGCTCT
CGATATAGCTCGCGACACACACAGATATATAGCGCTCCCTGAAACAGCTC
CGACACAGCTCGCACACCGCTCGAGACCTTAGCTAGCTCCTCTCGAGACG
TAGGGCTCTCGATATAGCTCGCGA
Copy Number Variation 10 of the human genome
could vary in copy number
1
2
20duplicazioni segmentali
- il genoma umano contiene complessivamente il
13,7 di segmenti duplicati con almeno il 90 di
identità di sequenza - il 5,2 del genoma contiene segmenti duplicati
lunghi tra 1 e 10kb, mentre il 4,5 tra 10kb e
20kb - i cromosomi più colpiti sono lY (50,4) ed il 22
(11,9), ma anche il 7, 9, 10, 15, 16, 17 e X - le duplicazioni segmentali possono essere
intracromosomiche o intercromosomiche - con tre localizzazioni differenti
- pericentromeriche (47Mb, dupliconi originati da
altri cromosomi) - subtelomeriche (ciascuna solo 50-100kb,
orientate) - interstiziali (solo nella specie umana sono
disseminate ad una distanza media di 3Mb)
21(No Transcript)
22Malattie autosomiche dominanti
- Come fanno le delezioni in uno solo dei due
alleli a costituire un carattere dominante? - il livello dimezzato di prodotto genico è
insufficiente a mantenere il fenotipo - il difetto eterozigote diviene omozigote a
livello delle cellule dei tessuti periferici
(LOH) - un solo allele è espresso per imprinting
dellaltro
23FISH
24Sonde FISHle sonde FISH devono essere mirate,
non possono essere utili nellanalisi genomica
generale
telomero
centromero
intero cromosoma
locus
25FISH
26Sindrome di DiGeorge
27DiGeorge/velocardiofacciale
La sindrome di DiGeorge del22q11.2 è la più
frequente sindrome da microdelezione, con un
incidenza di 1 su 40005000 nati La delezione
comprende 3Mb ed almeno 30 geni
28- La migrazione di cellule della cresta neurale
contribuisce alle strutture embrionali colpite
nella sindrome di DiGeorge
29DiGeorge
- È caratterizzata da
- Anomalie cardiache
- T-cell deficit
- palatoschisi
- anomalie facciali
- Ipocalcemia
- Mutazioni puntiformi del gene TBX1 possono
portare a questi 5 tratti fenotipici, ma non alle
difficoltà nellapprendimento che è invece
frequente nella sindrome da delezione
30Williams-Beuren
- prevalenza alla nascita 1/7500-1/20.000, ma può
non essere diagnosticata
31Williamsuna delezione tipica
32Williamsgenetica
- delezione de novo
- trasmissione autosomica dominante
- delezione di 1.6MB da 21 geni contigui in
eterozigosi a 7q11.23 - gene dellelastina
- LIM kinase 1 (LIMK1)
- CLIP-115 che lega i microtubuli
- Fattori di trascrizione GTF2I e GTF2IRD1
- effetto posizionale su altri geni circostanti la
delezione
33FISH della s. di Williams delezione 7q11.23
- rilevabile mediante FISH ma non cariotipo
34Williamscomportamento
- lieve o medio ritardo mentale (IQ tra 41 e 80)
- scarsa capacità di concentrazione
- ritardo nellapprendimento del linguaggio e poi
esagerata loquacità - personalità amichevole e affettuosa
- danno facilmente confidenza anche a sconosciuti
- ansietà, spesso preoccupati per il benessere
altrui - ipersensibilità ai suoni
- memoria visiva e uditiva spesso fuori dal comune
- ricordano persone, luoghi e motivi musicali
- predisposizione ad imparare le lingue e la musica
35Williamsaspetto e segni
- Faccia da elfo
- Occhi blu (77) con pattern stellato delliride
(74) ma questo vale per i nordeuropei, strabismo
(40) - Naso con la punta bulbosa
- bocca larga e guance piene
- microdontia e micrognazia
- Statura 10 cm in meno del normale
- ipercalcemia
- stenosi periferica delle arterie polmonari
- stenosi aortica sopravalvolare
36http//www.wsf.org/family/photoalbum/wsfphoto.htm
Williamsfoto
37Williams foto
38Wolf-Hirschhorngenetica
- delezione de novo di circa 4MB
- le delezioni sono più frequenti nella linea
germinale maschile - trasmissione autosomica dominante
- Regione critica di 165 kb di molti geni contigui
in eterozigosi a 4p16.3
39Wolf-Hirschhorndelezione a 4p16.3
40Wolf-Hirschhorn
- Scarso accrescimento
- Ritardo mentale, ipotonia
- Labbro leporino
- Conformazione ad elmo di guerriero greco
41Sindrome 5p- (cri du chat)150.000 nati
- Pianto acuto e flebile
- Caratteristiche principali
- Ritardo di crescita
- Microcefalia ed ipertelorismo
- Ipotonia, diastasi dei retti
- Deficit intellettivo e del linguaggio
42imprinting
- una piccola parte del genoma umano presenta
differenze significative nellespressione a
seconda se un gene è ereditato dal padre o dalla
madre - se due cromosomi sono provenienti dallo stesso
genitore (disomia uniparentale) e non da entrambi
i genitori, si determina morte o malattia - alla base di queste differenze cè limprinting
genomico - è dovuto a modificazioni epigenetiche (non
correlate alla sequenza primaria del DNA) - comporta l'aggiunta di un gruppo metile (CH3)-
alla posizione 5 di un residuo di citosina nel
DNA che precede immediatamente un residuo di
guanina (CpG).
43Imprinting
44Imprinting
- Nelle cellule germinali primordiali limprinting
viene cancellato del tutto e il DNA è demetilato - Successivamente nella linea germinale maschile si
determina un pattern di imprinting che in alcuni
loci è complementare a quello della linea
germinale femminile - I cromosomi su cui avviene limprinting (7, 11,
15) manterranno questo pattern e lo riprodurranno
ad ogni mitosi - Si potranno sempre distinguere lespressione
genica del cromosoma materno e paterno
45Disomia uniparentale
- Due copie dello stesso cromosoma sono ereditate
dallo stesso genitore - Spesso questo avviene attraverso un fenomeno
transitorio di trisomia, seguito dalla perdita
del cromosoma singolo e mantenimento del
cromosoma doppio
46Angelman
- 70 dei casi delezione della regione cromosomica
15q11-q13, che è soggetta al fenomeno
dell'imprinting del cromosoma paterno - Il gene materno (l'unico espresso) può essere
alterato con 4 meccanismi noti - delezione
- disomia uniparentale paterna
- difetti nell'imprinting
- mutazioni a carico del gene UBE3A (ubiquitin
ligasi) - La diagnosi è clinica e il difetto genetico non
si identifica nel 20 dei casi
47(No Transcript)
48Angelman
- "happy puppet syndrome" si può identificare in
Cucciolo (Dopey) "addormentato", il più giovane
dei nani che non ha mai imparato a parlare - ritardo mentale con assenza del linguaggio,
difficoltà nell'equilibrio, eccessivo buon umore
49Angelman
- L'incidenza è 1/20.000 nati
- crisi epilettiche e comunque alterazioni dell'EEG
e microcefalia relativa
50Prader-Willi
- iperfagiagtobesità
- eccessiva assunzione di liquidi
- reazioni abnormi ai sedativi
- acromicria, criptorchidismo
- insensibilità al dolore, lesioni cutanee
- sbalzi di umore
51Prader-Willi
1/15.000
52Nomenclatura delle delezioni
- Le delezioni sono designate con la sigla del che
segue i numeri dei nucleotidi a monte e a valle
della delezione separatida un segno _ - 82_83del (o 82_83delTG) indica una delezione di
TG nella sequenza ACTTTGTGCC (dove A è il
nucleotide 76) che diventa ACTTTGCC
53Cosa sono le distrofie muscolari?
- Malattie degenerative progressive
- Variazione dello spessore delle miofibrille con
forti cambiamenti nella istologia del muscolo - indebolimento e degenerazione del tessuto
muscolare in fibroso e adiposo - aree di necrosi con processi infiammatori
54Duchenne Becker
cingoli
distale
Emery- Dreifuss
facio-scapolo- omerale
oculo- faringea
55Distrofia muscolare Duchenne/Becker
- DMD Duchenne - 1/3,500 maschi
- Insorgenza -- Infanzia - tra 2 e 6 anni
- Sintomi Debolezza generalizzata e danno
muscolare prima agli arti e al tronco, polpacci
ingrossati - Progressione Lenta ma inesorabile. Colpisce
tutti i muscoli volontari. Sopravvivenza fino a
25-30 anni - BMD Becker - 1/10,000 maschi
- Insorgenza Adolescenza o dopo
- Sintomi Identici alla DMD ma più attenuati. Vi
è coinvolgimento cardiaco significativo - Progressione Più lenta e più variabile della
distrofia di Duchenne con buona aspettativa di
vita
56Le delezioni intrageniche del gene della
distrofina mandano fuori cornice la lettura delle
triplette quando gli esoni cancellati contenevano
un numero di nucleotidi che non è multiplo esatto
di tre (1,2,4,5,7,8,10,11 ecc). Questo causa la
distrofia di Duchenne.
57(No Transcript)
58Le delezioni intrageniche che non alterano la
cornice di lettura portano alla distrofia
muscolare di Becker o ad un apparente buona
salute. Forniscono informazioni per preparare
delle microdistrofine per la terapia genica
59Nomenclatura delle delezioni
- Le delezioni sono designate con la sigla del che
segue i numeri dei nucleotidi a monte e a valle
della delezione separatida un segno _ - 82_83del (o 82_83delTG) indica una delezione di
TG nella sequenza ACTTTGTGCC (dove A è il
nucleotide 76) che diventa ACTTTGCC
60La tecnica del CGH (comparative genomic
hybridization) permette lindividuazione di
sequenze delete o duplicate nel genoma da testare
(red) mediante il confronto con un genoma di
riferimento (green). Sono preparate due sonde
fluorescenti di colore diverso che ibridano
contemporaneamente sui cromosomi. Se in una
regione cromosomica prevale il colore (green)
relativo al genoma di controllo questo significa
che il genoma da testare (red) ha una delezione
in quella regione
61(No Transcript)
62DNA di controllo
DNA del paziente
Aggiungere DNA Cot-1
Ibridazione
CGH
CGH array
Analisi delle immagini con software dedicati
63Agilent Technology
64Evoluzione del catalogo delle sonde già testate
Human CGH High Density (HD) Database
65Agilent Manufacturing Facility
66Formati dei Microarray Agilent
6744,000-oligonucleotide with 8,769 interrogating
probes (60-mer oligonucleotides) Agilent
Technologies average spacing of probes across the
DMD coding region of at least one every 144 base
pairs digestion with AluI and Rsa I and
labeling Agilent CGH-Analytics V3.4s software
F
F
689293 probes that were replicated twice
(Agilent) remaining spots on each 44 K array were
filled with probes from the X chromosome (11745)
and all of the autosomes (12053) CGH Analytics
software (v3.5)
69microarray-based mutation detection in the
dystrophin gene (Nimblegen)
- 385,474 probes spanning the 2,222,000 bases of
the dystrophin gene on chromosome X
31,046,00033,268,000 - probe lengths from 45 to 60 nt with isothermal
melting temperature - DNA samples sonicated to a size between 500 and
2,000 bases - Labelling with Klenow and Cy3 or Cy5
Exon 44
70- Normalized log2 ratio data were analyzed using
two different analysis programs - (SegMNTor DNA copy) NimbleScan
- Gain and Loss Analysis of DNA (GLAD)
(www.bioconductor.org)
DNA copy
dup 2-4
GLAD
DNA copy
del 44
GLAD
71(1, gain 0, normal and1, loss),
del 17-44
del 48-52
72Solo la CGHarray riesce a chiarire la mutazione
nelle donne portatrici di una delezione o
duplicazione del cromosoma X. A causa della
presenza del secondo cromosoma X normale sono
difficili da identificare con altre tecniche
del 46-55
del 49-50
dup 18-38