Title: NEURAL NETWORKS FOR DATA MINING
1Chapter 8
- NEURAL NETWORKS FOR DATA MINING
2Learning Objectives
- ????????????????????????????????????????????
(artificial neural networks (ANN))
??????????????????????? - ????????????????????????????????????? ANN
- ??????????????? back propagation neural networks
?????????????????? - ??????????????????????????????????????????????????
? - ??????????????????????????????????????????????????
???
3Basic Concepts of Neural Networks
- ?????????????? (NN) ???? ???????????????????
(artificial neural network (ANN)) - ?????????????????????????????????????????????????
??????????????????????????????????
??????????????????????????????????????????????????
??????????????????????????????????????????????????
???
4Basic Concepts of Neural Networks
- ????????????????????? (Neural computing)
- ?????????????????????????????????????????????????
??????????????????????????????????????????????????
?????????????????? - Perceptron
- ????????????????????????????????????????????????
(hidden layer)
5Basic Concepts of Neural Networks
- ??????????????????????????????? (Biological and
artificial neural networks) - ?????? (Neurons)
- ????? (????????????? (processing elements)) ???
biological ???? artificial neural network - ????????? (Nucleus)
- ?????????????????????????
- ???????? (Dendrite)
- ??????? biological neuron ???????????????????????
?
6Basic Concepts of Neural Networks
- ??????? (Axon)
- ?????????????(i.e., terminal) ??? biological
neuron - ??????? (Synapse)
- ???????????? (?????????????????????????
(weights)) ??????????????????????? ?
????????????????
7Basic Concepts of Neural Networks
8Basic Concepts of Neural Networks
9Basic Concepts of Neural Networks
- ????????????? ANN
- ???????? (Topology)
- ??????????????????? ? ???????????????????????????
?????????? ? - ??????????? (Back propagation)
- ?????????????????????????????????????????????????
???????????????? ?????????????????????????????????
???????????????????????????????????????????
(????????????????????)
10Back Propagation
11Basic Concepts of Neural Networks
- ????????????? (Processing elements (PEs))
- ??????????????
- ????????????????
- ???????????????????? (??? 3 ???? ???? three
layers) - ?????? (Input)
- ???????? (Intermediate layer) ???? ???????
(hidden layer) - ???????? (Output)
12Basic Concepts of Neural Networks
13Basic Concepts of Neural Networks
- ?????????????????? (Parallel processing)
- ?????????????????????????????????????????????????
????????????????????????? ? ??????????????????????
? ???? ?????????????????????????? ?
Six specialized vector processors (SPUs)
14Basic Concepts of Neural Networks
- ???????????????????????????
- ?????? (Inputs)
- ???????? (Outputs)
- ????????????????????????????? (Connection
weights) - ?????????????? (Summation function) ????
??????????????????????(Transformation function)
???? ?????????????????? (Transfer function)
15Basic Concepts of Neural Networks
- ????????????????????????????? (Connection
weights) - ????????????????????????????? link
?????????????????????? ???????????????????????????
???????????????????????????????? (neural networks
learning algorithm) - ?????????????? (Summation function) ????
??????????????????????(Transformation function)
???? ?????????????????? (Transfer function) - ???????????????????? ?????????????? (???????)
?????????????? ( transform) ?????????????????????
fire (????????????????) ??????????????????????????
? internal activation level ??????????????????????
?????
16Basic Concepts of Neural Networks
17Basic Concepts of Neural Networks
- ???????????????? (Sigmoid (logical activation)
function) - S-shaped transfer function ??????????????????? 0
??? 1 - ??????????? (Threshold value)
- ????????????????????????????????????????
(trigger) ??????????????????? ????????????????????
??????????????????????? ??????????????????????????
???????????????????? (???????????????
???????????????????????????) - ??????? (Hidden layer)
- ???????? (middle layer) ?????????????????????????
???????????????????????????
18(No Transcript)
19Sigmoid Function
20Basic Concepts of Neural Networks
Y Sum of (wixi) (3(0.2) 1(0.4) 2(0.1))
1.2 Transfer function 1/(1exp (-x)) YT
1/(1exp(-1.2)) 0.77
21- ???????????????????? ?????????????? Threshold
0.8 ???? ?????????????? Output ????? - ????????????????? Threshold 0.8 ????
??????????? Output ?????
22Basic Concepts of Neural Networks
- ????????????????????????????
- ???????????????????????????????? ? ????????????
- Back propagation
- Feed forward (or associative memory)
- Recurrent network
23Basic Concepts of Neural Networks
24Basic Concepts of Neural Networks
25Learning in ANN
- Learning algorithm
- ??????????????????????????????? artificial
neural network - Supervised learning
- ???????????????? (training) ?????????????????????
??????????????????????????????????????????????????
???????? weights ?????????????????????????????????
?????????????????
26- Unsupervised learning
- ?????????????????????????????????????????????????
????????????????????????????????
??????????????????????????????????????????????????
?????
27Learning in ANN
- Self-organizing
- ?????????????????????????????????????????????????
? unsupervised learning - Adaptive resonance theory (ART)
- ???????? unsupervised learning ???????????????
Stephen Grossberg ????????????????????????????????
??????????????????????????????????????????????????
???????????????? unsupervised mode - Kohonen self-organizing feature maps
- ??????????????????????????????????????? machine
learning
28Learning in ANN
29Learning in ANN
- ???????????????????? ANN ?????????
??????????????????????? - ????? temporary outputs
- ??????????? temporary outputs ????????? desired
targets - ????????? weights ?????????????????
30Learning in ANN
31Learning in ANN
- ?????????????? (Pattern recognition)
- ??????????????????? matching ???????????????
(external pattern) ???????????????????????????????
????????????????? ???????????? inference
engines, image processing, neural computing, ???
speech recognition (????????????????????????????
????????????? classify data ??????? predetermined
categories)
32Learning in ANN
- ???????????????????????
- ???????????????? (Learning rate)
- ???????????????????????????????????????
??????????????????????????????????????????????????
???????? offset ????? - ???????? (Momentum)
- ??????????????????? (learning parameter)
??????????????????? feedforward-backpropagation
33Learning in ANN
- Backpropagation
- ?????????????????????????????????????????????????
???????????????????? ?????????????????????????????
???????????????????? (computed output)
????????????????????? (desired outputs)
??????????? historical cases
34Learning in ANN
- ??????????????????????????
- ????????????? learning algorithm
- ??????????????????? weights ?????? random values
?????????????????? ? ????????????? - ???? input vector ??? desired output
???????????????? - ???????????????????????????????????????? layer
???? ? ???????????????????????? ? ????? (actual
output) - ????????????????????? (error)
- ????????????????????????? ? (weights)
??????????????????? (working backward) ??? output
layer ????? hidden layers
35Developing Neural NetworkBased Systems
36Developing Neural NetworkBased Systems
- ?????????????????????????????? (Data collection
and preparation) - ??????????????????????????????????? (training and
testing) ?????????????????????????????????????????
?????????? - ???????????????????????????? (Selection of
network structure) - ??????????? topology ????? ?
- ???????? (Topology)
- ?????????????????????????????????????????????????
????????? (???????????????????????????????????????
????????????????)
37Developing Neural NetworkBased Systems
- ???????? topology
- ?????????????????
- ?????????????????? (Input nodes)
- ???????????????????? (Output nodes)
- ????? hidden layers
- ???????????????? hidden layer
38Developing Neural NetworkBased Systems
- ???????????????????????????? (Learning algorithm
selection) - ??????? set of connection weights ???????????
training data ???????? ????????? best predictive
accuracy - ?????????????? (Network training)
- ?????????????? ? ??????????? a random set of
weights ??? ???? ? ???????????????????????????????
???????????????????????????????????????????
(??????? ??????????????????? ?????????????????????
??????) - ??????????????????????????????????????????
(?????????????????????????????????????????????????
?????????) ???????????????????????????????????????
?????????
39Developing Neural NetworkBased Systems
- ???????? (Testing)
- Black-box testing
- ?????????????????????????????????????????????????
????????????????????? - ????????????????????? routine cases ???
potentially problematic situations - ????????????????????????? ?? large deviations
??????????????????????????????????????????????????
?????? ???????????????????????????????????????????
????????????????????????????????
40Developing Neural NetworkBased Systems
- ????? ANN ????????
- ??????????????????????????????????????????????????
???????????????????????? ? ???????????????????????
?????????????? - ???????? Ongoing monitoring ??? feedback
??????????????????????????????????????????????????
?????????????? - ??????????????????????????????????????????????????
??????????????????????????????????????????????????
??????????????????????????????????????????????????
?
41Developing Neural NetworkBased Systems
42A Sample Neural Network Project
43Other Neural Network Paradigms
- Hopfield networks
- A single large layer of neurons
????????????????????????????????? (total
interconnectivity) ??????? ???????????????????????
???????????? ? ?????? - ????????????????????????????????????????????????
- ????????????????? Hopfield networks ?????
?????????????????? constrained optimization
problem ???? classic traveling salesman problem
(TSP)
44Other Neural Network Paradigms
- Self-organizing networks
- Kohonens self-organizing network ??????????????
unsupervised mode - ????????????? Kohonen ??????????????? feature
maps ??????? neighborhoods of neurons
?????????????? - Neighborhood ???????????????????????????????
topology ?????????????????????????????????????????
???????????????????? - Self-organizing maps ???? self organizing feature
maps ?????????????????????????? some early
insight into the data
45(No Transcript)
46Applications of ANN
- ANN ??????????????????? ? ?????????????????
categorical ??? numeric ??????????????????????????
??????????????????????????????????? ????
???????????????????????????????????????
47??????????? 8