Title: Spatial Econometric Analysis Using GAUSS
1Spatial Econometric Analysis Using GAUSS
- 8
- Kuan-Pin LinPortland State University
2Panel Data AnalysisA Review
- Model Representation
- N-first or T-first representation
- Pooled Model
- Fixed Effects Model
- Random Effects Model
- Asymptotic Theory
- N?8, or T?8
- N?8, T?8
- Panel-Robust Inference
3Panel Data AnalysisA Review
- The Model
- One-Way (Individual) Effects
- Unobserved Heterogeneity
- Cross Section and Time Series Correlation
4Panel Data AnalysisA Review
- N-first Representation
- Dummy Variables Representation
5Panel Data AnalysisA Review
6Pooled (Constant Effects) Model
7Fixed Effects Model
- ui is fixed, independent of eit, and may be
correlated with xit.
8Fixed Effects Model
- Fixed Effects Model
- Classical Assumptions
- Strict Exogeneity
- Homoschedasticity
- No cross section and time series correlation
- Extensions
- Panel Robust Variance-Covariance Matrix
9Random Effects Model
- Error Components
- ui is random, independent of eit and xit.
- Define the error components as eit ui eit
10Random Effects Model
- Random Effects Model
- Classical Assumptions
- Strict Exogeneity
- X includes a constant term, otherwise E(uiX)u.
- Homoschedasticity
- Constant Auto-covariance (within panels)
11Random Effects Model
- Random Effects Model
- Classical Assumptions (Continued)
- Cross Section Independence
- Extensions
- Panel Robust Variance-Covariance Matrix
12Fixed Effects Model Estimation
- Within Model Representation
13Fixed Effects Model Estimation
14Fixed Effects Model Estimation OLS
15Fixed Effects Model Estimation ML
16Fixed Effects Model Estimation ML
- Log-Likelihood Function
- Since Q is singular and Q0, we maximize
17Fixed Effects Model Estimation ML
18Fixed Effects ModelHypothesis Testing
- Pool or Not Pool
- F-Test based on dummy variable model constant or
zero coefficients for D w.r.t F(N-1,NT-N-K) - F-test based on fixed effects (unrestricted)
model vs. pooled (restricted) model
19Fixed Effects ModelHypothesis Testing
- Based on estimated residuals of the fixed effects
model - Heteroscedasticity
- Breusch and Pagan (1980)
- Autocorrelation AR(1)
- Breusch and Godfrey (1981)
20Random Effects Model Estimation GLS
21Random Effects Model Estimation GLS
22Random Effects Model Estimation GLS
- Feasible GLS
- Based on estimated residuals of fixed effects
model
23Random Effects Model Estimation ML
24Random Effects Model Estimation ML
25Random Effects Model Estimation ML
26Random Effects ModelHypothesis Testing
- Pool or Not Pool
- Test for Var(ui) 0, that is
- For balanced panel data, the Lagrange-multiplier
test statistic (Breusch-Pagan, 1980) is
27Random Effects ModelHypothesis Testing
28Random Effects ModelHypothesis Testing
- Fixed Effects vs. Random Effects
Estimator Random Effects E(uiXi) 0 Fixed Effects E(uiXi) / 0
GLS or RE-OLS (Random Effects) Consistent and Efficient Inconsistent
LSDV or FE-OLS (Fixed Effects) Consistent Inefficient Consistent Possibly Efficient
29Random Effects ModelHypothesis Testing
- Fixed effects estimator is consistent under H0
and H1 Random effects estimator is efficient
under H0, but it is inconsistent under H1. - Hausman Test Statistic
30Random Effects ModelHypothesis Testing
- Alternative Hausman Test
- Estimate the random effects model
- F Test that g 0
31Random Effects ModelHypothesis Testing
- H0 ?20 ?10
- H0 ?10 ?20
- H0 ?20, ?10
32Random Effects ModelHypothesis Testing
- Heteroscedasticity (Cont.)
- Based on random effects model with
homoscedasticity
33Random Effects ModelHypothesis Testing
- Heteroscedasticity (Cont.)
34Random Effects ModelHypothesis Testing
- Heteroscedasticity (Cont.)
- Baltagi, B., Bresson, G., Pirotte, A. (2006)
Joint LM test for homoscedasticity in a one-way
error component model. Journal of Econometrics,
134, 401-417.
35Random Effects ModelHypothesis Testing
- Autocorrelation AR(1)
- Based on random effects model with no
autocorrelation - LM test statistic is tedious, see
- Baltagi, B., Li, Q. (1995) Testing AR(1) against
MA(1) disturbances in an error component model.
Journal of Econometrics, 68, 133-151.
36Random Effects ModelHypothesis Testing
- Joint Test for AR(1) and Random Effects
- Based on OLS residuals
- Marginal Test for AR(1) Random Effects
37Random Effects ModelHypothesis Testing
- Robust LM Tests for AR(1) and Random Effects
- Because
38Panel Data AnalysisAn Example U. S. Productivity
39Panel Data AnalysisAn Example U. S. Productivity
- Productivity Data
- 48 Continental U.S. States, 17 Years1970-1986
- STATE State name,
- ST_ABB State abbreviation,
- YR Year, 1970, . . . ,1986,
- PCAP Public capital,
- HWY Highway capital,
- WATER Water utility capital,
- UTIL Utility capital,
- PC Private capital,
- GSP Gross state product,
- EMP Employment,
- UNEMP Unemployment rate
40U. S. ProductivityBaltagi (2008) munnell.1,
munnell.2
- Panel Data Model ln(GSP) b0 b1 ln(Public)
b2ln(Private) b3ln(Labor)
b4(Unemp) e
Fixed Effects s.e Random Effects s.e
b1 -0.026 0.029 0.003 0.024
b2 0.292 0.025 0.310 0.020
b3 0.768 0.030 0.731 0.026
b4 -0.005 0.001 -0.006 0.001
b0 2.144 0.137
F(47,764) 75.82 F(47,764) 75.82 LM(1) 4135 LM(1) 4135
Hausman LM(4) 905.1 Hausman LM(4) 905.1 Hausman LM(4) 905.1 Hausman LM(4) 905.1
41Panel Data AnalysisAnother Example China
Provincial Productivity
- Cobb-Douglass Production Function
- ln(GDP) a b ln(L) g
ln(K) e
Fixed Effects s.e. Random Effects s.e
b 0.30204 0.078 0.4925 0.078
g 0.04236 0.0178 0.0121 0.0176
a 2.6714 0.6254
F(29,298) 158.81 F(29,298) 158.81 LM(1) 771.45 LM(1) 771.45
Hausman LM(2) 48.4 Hausman LM(2) 48.4 Hausman LM(2) 48.4 Hausman LM(2) 48.4
42References
- B. H. Baltagi, Econometric Analysis of Panel
Data, 4th ed., John Wiley, New York, 2008. - W. H. Greene, Econometric Analysis, 6th ed.,
Chapter 9 Models for Panel Data, Prentice Hall,
2008. - C. Hsiao, Analysis of Panel Data, 2nd ed.,
Cambridge University Press, 2003. - J. M. Wooldridge, Econometric Analysis of Cross
Section and Panel Data, The MIT Press, 2002.