Spatial Econometric Analysis Using GAUSS - PowerPoint PPT Presentation

About This Presentation
Title:

Spatial Econometric Analysis Using GAUSS

Description:

Spatial Econometric Analysis Using GAUSS 8 Kuan-Pin Lin Portland State University Random Effects Model Hypothesis Testing Heteroscedasticity (Cont.) Baltagi, B ... – PowerPoint PPT presentation

Number of Views:94
Avg rating:3.0/5.0
Slides: 43
Provided by: kuan9
Learn more at: https://web.pdx.edu
Category:

less

Transcript and Presenter's Notes

Title: Spatial Econometric Analysis Using GAUSS


1
Spatial Econometric Analysis Using GAUSS
  • 8
  • Kuan-Pin LinPortland State University

2
Panel Data AnalysisA Review
  • Model Representation
  • N-first or T-first representation
  • Pooled Model
  • Fixed Effects Model
  • Random Effects Model
  • Asymptotic Theory
  • N?8, or T?8
  • N?8, T?8
  • Panel-Robust Inference

3
Panel Data AnalysisA Review
  • The Model
  • One-Way (Individual) Effects
  • Unobserved Heterogeneity
  • Cross Section and Time Series Correlation

4
Panel Data AnalysisA Review
  • N-first Representation
  • Dummy Variables Representation
  • T-first Representation

5
Panel Data AnalysisA Review
  • Notations

6
Pooled (Constant Effects) Model
7
Fixed Effects Model
  • ui is fixed, independent of eit, and may be
    correlated with xit.

8
Fixed Effects Model
  • Fixed Effects Model
  • Classical Assumptions
  • Strict Exogeneity
  • Homoschedasticity
  • No cross section and time series correlation
  • Extensions
  • Panel Robust Variance-Covariance Matrix

9
Random Effects Model
  • Error Components
  • ui is random, independent of eit and xit.
  • Define the error components as eit ui eit

10
Random Effects Model
  • Random Effects Model
  • Classical Assumptions
  • Strict Exogeneity
  • X includes a constant term, otherwise E(uiX)u.
  • Homoschedasticity
  • Constant Auto-covariance (within panels)

11
Random Effects Model
  • Random Effects Model
  • Classical Assumptions (Continued)
  • Cross Section Independence
  • Extensions
  • Panel Robust Variance-Covariance Matrix

12
Fixed Effects Model Estimation
  • Within Model Representation

13
Fixed Effects Model Estimation
  • Model Assumptions

14
Fixed Effects Model Estimation OLS
  • Within Estimator OLS

15
Fixed Effects Model Estimation ML
  • Normality Assumption

16
Fixed Effects Model Estimation ML
  • Log-Likelihood Function
  • Since Q is singular and Q0, we maximize

17
Fixed Effects Model Estimation ML
  • ML Estimator

18
Fixed Effects ModelHypothesis Testing
  • Pool or Not Pool
  • F-Test based on dummy variable model constant or
    zero coefficients for D w.r.t F(N-1,NT-N-K)
  • F-test based on fixed effects (unrestricted)
    model vs. pooled (restricted) model

19
Fixed Effects ModelHypothesis Testing
  • Based on estimated residuals of the fixed effects
    model
  • Heteroscedasticity
  • Breusch and Pagan (1980)
  • Autocorrelation AR(1)
  • Breusch and Godfrey (1981)

20
Random Effects Model Estimation GLS
  • The Model

21
Random Effects Model Estimation GLS
  • GLS

22
Random Effects Model Estimation GLS
  • Feasible GLS
  • Based on estimated residuals of fixed effects
    model

23
Random Effects Model Estimation ML
  • Log-Likelihood Function

24
Random Effects Model Estimation ML
  • where

25
Random Effects Model Estimation ML
  • ML Estimator

26
Random Effects ModelHypothesis Testing
  • Pool or Not Pool
  • Test for Var(ui) 0, that is
  • For balanced panel data, the Lagrange-multiplier
    test statistic (Breusch-Pagan, 1980) is

27
Random Effects ModelHypothesis Testing
  • Pool or Not Pool (Cont.)

28
Random Effects ModelHypothesis Testing
  • Fixed Effects vs. Random Effects

Estimator Random Effects E(uiXi) 0 Fixed Effects E(uiXi) / 0
GLS or RE-OLS (Random Effects) Consistent and Efficient Inconsistent
LSDV or FE-OLS (Fixed Effects) Consistent Inefficient Consistent Possibly Efficient
29
Random Effects ModelHypothesis Testing
  • Fixed effects estimator is consistent under H0
    and H1 Random effects estimator is efficient
    under H0, but it is inconsistent under H1.
  • Hausman Test Statistic

30
Random Effects ModelHypothesis Testing
  • Alternative Hausman Test
  • Estimate the random effects model
  • F Test that g 0

31
Random Effects ModelHypothesis Testing
  • Heteroscedasticity
  • H0 ?20 ?10
  • H0 ?10 ?20
  • H0 ?20, ?10

32
Random Effects ModelHypothesis Testing
  • Heteroscedasticity (Cont.)
  • Based on random effects model with
    homoscedasticity

33
Random Effects ModelHypothesis Testing
  • Heteroscedasticity (Cont.)

34
Random Effects ModelHypothesis Testing
  • Heteroscedasticity (Cont.)
  • Baltagi, B., Bresson, G., Pirotte, A. (2006)
    Joint LM test for homoscedasticity in a one-way
    error component model. Journal of Econometrics,
    134, 401-417.

35
Random Effects ModelHypothesis Testing
  • Autocorrelation AR(1)
  • Based on random effects model with no
    autocorrelation
  • LM test statistic is tedious, see
  • Baltagi, B., Li, Q. (1995) Testing AR(1) against
    MA(1) disturbances in an error component model.
    Journal of Econometrics, 68, 133-151.

36
Random Effects ModelHypothesis Testing
  • Joint Test for AR(1) and Random Effects
  • Based on OLS residuals
  • Marginal Test for AR(1) Random Effects

37
Random Effects ModelHypothesis Testing
  • Robust LM Tests for AR(1) and Random Effects
  • Because

38
Panel Data AnalysisAn Example U. S. Productivity
  • The Model (Munnell 1988)

39
Panel Data AnalysisAn Example U. S. Productivity
  • Productivity Data
  • 48 Continental U.S. States, 17 Years1970-1986
  • STATE State name,
  • ST_ABB State abbreviation,
  • YR Year, 1970, . . . ,1986,
  • PCAP Public capital,
  • HWY Highway capital,
  • WATER Water utility capital,
  • UTIL Utility capital,
  • PC Private capital,
  • GSP Gross state product,
  • EMP Employment,
  • UNEMP Unemployment rate

40
U. S. ProductivityBaltagi (2008) munnell.1,
munnell.2
  • Panel Data Model ln(GSP) b0 b1 ln(Public)
    b2ln(Private) b3ln(Labor)
    b4(Unemp) e

Fixed Effects s.e Random Effects s.e
b1 -0.026 0.029 0.003 0.024
b2 0.292 0.025 0.310 0.020
b3 0.768 0.030 0.731 0.026
b4 -0.005 0.001 -0.006 0.001
b0 2.144 0.137
F(47,764) 75.82 F(47,764) 75.82 LM(1) 4135 LM(1) 4135
Hausman LM(4) 905.1 Hausman LM(4) 905.1 Hausman LM(4) 905.1 Hausman LM(4) 905.1
41
Panel Data AnalysisAnother Example China
Provincial Productivity
  • Cobb-Douglass Production Function
  • ln(GDP) a b ln(L) g
    ln(K) e

Fixed Effects s.e. Random Effects s.e
b 0.30204 0.078 0.4925 0.078
g 0.04236 0.0178 0.0121 0.0176
a 2.6714 0.6254
F(29,298) 158.81 F(29,298) 158.81 LM(1) 771.45 LM(1) 771.45
Hausman LM(2) 48.4 Hausman LM(2) 48.4 Hausman LM(2) 48.4 Hausman LM(2) 48.4
42
References
  • B. H. Baltagi, Econometric Analysis of Panel
    Data, 4th ed., John Wiley, New York, 2008.
  • W. H. Greene, Econometric Analysis, 6th ed.,
    Chapter 9 Models for Panel Data, Prentice Hall,
    2008.
  • C. Hsiao, Analysis of Panel Data, 2nd ed.,
    Cambridge University Press, 2003.
  • J. M. Wooldridge, Econometric Analysis of Cross
    Section and Panel Data, The MIT Press, 2002.
Write a Comment
User Comments (0)
About PowerShow.com