Title: Chapter 2 Adsorption of Surfactants
1Chapter 2 Adsorption of Surfactants at Interface
2006.3.18.
2(No Transcript)
31. The surface excess concentration and the
Gibbs adsorption equation
- About adsorption
- The interfaces of adsorption
- G-L surface adsorption foam
- L-L interface adsorption emulsion
- S-L interface adsorption wetting, dispersing
- (2) Surface active and adsorption
- Surface active ? Adsorption on surface
4- (3) Tow type in surface adsorption
- Orientation adsorption of hydrophobic groups
- (b) Orientation adsorption of hydrophilic groups.
5- 2. Surface excess concentration
- Interface phase (or layer)
- two phases inter-dissolved
- ???
- Thickness of interface phase
- a couple of molecules 0.5nm
- in dilute solution
6- (2) Surface excess
- concentration
- If total mole
- number of i component ni0
- (b) The concentration of ??? phase
- Ci? Ci? and Ci? gt Ci?
- (c) The boundary surface ss
- total volume of ??? phase V?, V?
- ni Ci? V? Ci? V?
- (d) Surface excess ni? ni0- nini0- (Ci? V?
Ci? V?)
7- (e) Surface excess concentration
- ?i ni?/A A area of ss-surface
- ????????i ???????????????????i ?????????
- ???????????, Ci? Ci? ? 1, ?i
????????,????????? - ?i ni?/A ni0- ni/A
- ni0- (Ci? V? Ci? V?)/A
- ? ni0 /A
8- 2. Gibbs adsorption equation
- Thermodynamics
- Mono-component
- UTS-PV
- Multi-component
- UTS-PV ??ini
- In surface phase
- U? TS? -PV? ??ini? ?A
9- Total differential
- dU? TdS? S? dT - PdV? - V?dP ??i dni? ?ni?
d?I ?dA A d? ? - Thermodynamic equation
- dU? TdS? - PdV? ??i dni? ?dA ?
- ?-?, then
- S? dT - V?dP ?ni? d?i A d? 0
- ( )TP
- ?ni? d?i A d? 0 or d? -?ni? /Ad?i
- d? -??id?i
10- d? -??id?i
- Two-component d? -?1d?1 - ?2d?2
- ss surface uncertain! So ?i uncertain!
- (2) Gibbs method
- If solvent i 1, then ?1 0
- Gibbs eq. d? - ?2(1)d?2
- (1)-solvent 1 as frame of reference
- ?2 ?20 RTlna2
- Gibbs eq. d? - ?2(1)d?2 - RT?2(1)dlna2
11- (b) Gibbs equation
- ?2(1) -(1/ RT) d?/dlna2 -(a2/ RT) d?/da2
- ? -(1/ RT) d?/dlnc2 -(c2/ RT) d?/dc2
- d?/dc2lt 0, c2?, ? ? , ?2(1) gt 0 positive
adsorption - d?/dc2 0, c2? , ?2(1) 0 no adsorption
- d?/dc2gt 0, c2?, ? ? , ?2(1) lt 0 negative
adsorption - (c) Multi-component
- -d? ??id?i RT ??i(1) dlna2
- ? RT ??i(1) dlnc2
122. Surfactants adsorption at G-L interface
- Calculation of ?
- ( )TP,Two-component
- ?2(1) -(1/ RT) d?/dlna2 -(a2/ RT) d?/da2
- ? -(1/ RT) d?/dlnc2 -(c2/ RT) d?/dc2
- Nonionics (c2 lt 10-2)
- ?2(1) -(1/ RT) d?/dlna2 -(a2/ RT) d?/da2
- ? -(1/ RT) d?/dlnc2 -(c2/ RT) d?/dc2
- If (d?/dc2)c2 is known, ?2(1) at c2 can be
calculated.
13- (2) Ionics
- 1-1type ionics
- RNa R- Na
- -(d?/ RT) ?R-(1) dlnaR- ?Na(1) dlnaNa
- ?OH-(1) dlnaOH- ?H(1) dlnaH
- Very low degree of ionization , ?R-(1) ? ?Na(1)
- -(d?/ RT) ?R-(1) dlnaR- dlnaNa
- ?R-(1) dlnaR- aNa
- a? a?a-?-, ?R-(1) dlna2 2 ?R-(1)
dlna - ? 2 ?R-(1)
dlnc? 2 ?R-(1) dlnm
14- (b) Electrolyte Surface excess concentration ?
- homo ion e.g. NaCl ??
- no homo ion e.g. KCl , K and Na exchange
- ? -(d?/ RT) x?R-(1) dlnm
- x?R-(1) dlnmR- x?R-(1) dlncR-
- x 1 cR-/(cR-cs)
- Cs- concentration of salt
- 1-1type finite quantity cs 0, x 2
- -(d?/ RT) x?R-(1) dlnm
- Infinity quantity cs ?, x 1.
- -(d?/ RT) ?R-(1) dlnm
15- No 1-1type ionics
- if 1mole ionics ionize to x mole positive
and negative ions, then - -(d?/ RT) x?2(1) dlna
- 2. Adsorption of surfactants at solution surface
- Langmuir adsorption isotherm
- ? ?0 - ?0ln(1 ? c2)
- d ?/d c2 -?0 ?/(1 ? c2)
- ?2(1) ? -(c2/ RT) d?/dc2
- (?0 / RT)? c2/(1 ? c2)
- ??(1) ? c2/(1 ? c2)
16(2) The Surface excess concentration ?2(1)
??(1) unit mole/m2
17- (3) The area per molecule A A?
- A 1018/NA ?2(1) (nm2)
- lauryl sodium sulfate???????
18The area of C12H25O(C2H4O)nH(55ºC)
The area of C16H33O(C2H4O)nH(55ºC)
193. Surfactants adsorption at L-L interface
- 1. L-L interface
- L-L two phases
- Distribution of
- surfactants in L-L two phases
20- 2. Adsorption of
- PEO nonionics
- at coal oil-water interface
- TltTP(Fig. a)
- TgtTP(Fig. b)
- benzene
- PEO in water
- PPO in benzene
214. Interfacial Adsorption Surfactivity
- Efficiency(??) and Effectiveness(??) of Surface
Adsorption - What are the Efficiency (??) and the
Effectiveness (??) ? - Efficiency(??) the effects produced per wastage
- Effectiveness(??) the most effects
- (2) Efficiency(??) of Surface Adsorption
- ?I/ci adsorption per-concentration
- Two-component Gibbs eq. ?2/c2 - (1/RT)d?/dc2
- If - d?/dc2 ? , then ?2/c2 ?
22- (3) Effectiveness(??) of Surface Adsorption
- ??- saturated adsorption excess concentration
- (4) Some factors of influence to them
- Hydrophobic groups
- hydrophobicity(R, or SiR or YR)?, ?2/c2
? - if RgtC16, then ?? ?
- Hydrophilic groups
- ?2/c2 Nonionics gt Ionics (same R)
- ?? Nonionics gt Ionics (coulomibic repulsion)
- Nonionics n?, ???
23- (c) Additives
- Electrolyte , Ionic Strength I(1/2)?CiZi2 ?,
- hydrophilicity ? , surface activity ?, ?2/c2?
- the radius of ionic atmosphere ?, ???
- Regulator of water structure(??????)
- Promoters ? fructose,xylose ?2/c2?
- Breakers ? urea,lower alcohol ?2/c2?
- ?? no marked affect
- (d) Temperature if T?, then
- Ionics water-soluble?, ?2/c2? repulsion ?, ???
- Nonionics water-soluble?, ?2/c2? ???
24- 2. Efficiency(??) and Effectiveness(??) of
Surface Tension Reduction - (1) Efficiency(??) of Surface Tension Reduction
- Traube rule
- Surface Pressure(???) ? ?0 - ?
- Efficiency(??) ?/c2 ?, Efficiency?
- (b) PC20 - log10 c ? 20mN/m ?, Efficiency?
- (2) Effectiveness(??) of Surface Tension
Reduction - ?CMC ?0 - ?CMC ?, Effectiveness?
- (3) Some Factors of Influence to Them
- Efficiency of Surface Tension Reduction
- ??2 Efficiency of Surface adsorption
25- Fluorocarbons gt Silicones gt Hydrocarbon gt
Branched Hydrocarbon - Nonionics gt Zwitterion gt Ionics
- I ?, PC20?
- (b) Effectiveness(?CMC ) of Surface Tension
Reduction - From Gibbs Eq. d? -d? xRT??dlnC
- ?? ?2 - ?1 xRT?? ?lnC xRT?? (lnC2-lnC1)
- If C1C20, ?1 20mN/m C2 CMC, ?2 ?CMC , then
- ?CMC 20xRT ?? ln(CMC/C20)
- x mole number dissociated by1 mole ionics
26- (CMC/C20)?, C20? or CMC?, Surface Tension
Reduction gt Micelle - (CMC/C20)?, C20? or CMC?, Surface Ten?sion
Reduction lt Micelle - ?Generally ?CMC ?? , but some special case
,e.g. - Branched Chain Surfactants
- branching degree ?, ?? ?, CMC ?, (CMC/C20) ?
- ? ?CMC ?
- The Branched Chain Surfactants is a Surfactants
of Surface Tension Reduction.
27Efficiency(??) and Effectiveness(??)
of Surfactants at Interface
28Efficiency(??) and Effectiveness(??)
of Surfactants at Interface
29Efficiency(??) and Effectiveness(??)
of Surfactants at Interface
30Efficiency(??) and Effectiveness(??)
of Surfactants at Interface
31Efficiency(??) and Effectiveness(??)
of Surfactants at Interface
32Efficiency(??) and Effectiveness(??)
of Surfactants at Interface
33CMC/C20 Ration of some Surfactants
34CMC/C20 Ration of some Surfactants
353. Insolubility Monomolecular Membrane
- Formation of Monomolecular Film
- 1769, Franklin Spread a cup of olive oil
(???80 oleic acid) on 2000m2 of pool, than the
wave of pool was calm immediately. - (2) Every Stations of Monomolecular Film
- Gaseous film
- ideal gas -d?/dc - ??/?c2
-(?-?0)/(c2-0) - (?0-?)/c2
?/c2 - From Gibbs equation ?2(1) ? -(c2/ RT) d?/dc2
-
?/RT ?/N0kT - ?/N0 ?2(1) ?A kT
36- (b) Liquid film expand film(L1) condensed
film(L2) - L1 A 50Å2 (? - ?0)(A A0) kT
- L1?L2 transition region , condensability.
- L2 A? A b - a?
- (c) Solid film(S) A 20Å2
37(No Transcript)
38(No Transcript)
395. Surfactants adsorption at S-L interface
- 1. Adsorptive capacity and its determination from
solution - (1) Adsorbents(???)
- (2) Adsorbate (???)
- (3) Apparent Absorbency(?????)
- x/m (C0-C)V/m mole/g
- 2. Mechanisms of Adsorption at S-L interface
- L-S Interface may be Electrified, Adsorption
at S-L interface is comparatively complex. - Ion Exchange adsorption
40(2) Ion Pairing (3) Hydrogen
bonding (4)Acid-Base Interaction
41(5) Adsorption by Polarization of ?
Electrons (6) Adsorption by Dispersion
Forces (7) Hydrophobic bonding
42- 3. Factors Affecting the Adsorption at S-L
Interface - (1) Adsorbate (???)
- Hydrophobic Groups
- hydrophobicity (e.g. R)?, ??
- fluocarbon chains gt siloxane gt hydrocarbon chains
- (b) Hydrophilic Groups
- Ionics with different
- charge of interface gt
- Nonionics gt Ionics
- with same charge
- of interface
43- (2) Temperature
- Ionics T?, ??
- PEO Nonionics T? , ??
- (3) pH
- Surface charge of adsorbents(???)IEP, ZEP
- pH?, negative surface charge
- pH?, positive surface charge
- (b) Charge of adsorbates(???) IEP
- (4) Additives
- Electrolyte , I(1/2)?CiZi2 ?, radius of ionic
atmosphere ?, hydrophilicity ? , ??, ???
44- Regulator of water structure(??????)
- Promoters ? fructose,xylose?/c ?, ?? (small)
- Breakers ? urea,lower alcohol ?/c?, ?? (small)
- (6) Adsorbents(???)
- Adsorption from aqueous solution onto adsorbents
with strongly charged sites - Such substrates as wool and other polyamides at
pH above and below their isoelectric points - Such oxides as alumina at pH above and below
their points of zero charge
45- cellulosic and silicate surfaces at high pH
- e.g. Ion Exchange, Ion Pairing, Hydrogen
bonding adsorption - S-shaped adsorption isotherm for an ionics on an
oppositely charged substrute. - ?ion exchange
- ?interaction of hydrophobic chains. The conc.
Well below the CMC,-hemimicelle formation or
cooperative adsorption
46- (b) Adsorption from aqueous solution onto
nonpolar, hydrophobic dsorbents - e.g. carbon and polyethylene or polypropylene
Adsorption of sodium dodecyl sulfate onto Graphon
at 25ºC(?0.1MNaCl aq.)
47Adsorption of dodecyltrimethylammonium bromide
onto Graphon at 25ºC (?0.1MNaBr aq.)
48- (c) Adsorption from aqueous solution onto polar
adsorbents without strongly charged sites - such as cotton, polyesters and polyamides in
neutral solution - by a combination of hydrogen bonding and
adsorption or dispersion forces - Langmuir adsorption type