EGS talk 2002 - PowerPoint PPT Presentation

About This Presentation
Title:

EGS talk 2002

Description:

Title: EGS talk 2002 Author: Dusanka Zupanski Last modified by: Zupanski Created Date: 1/6/1999 10:21:48 PM Document presentation format: On-screen Show – PowerPoint PPT presentation

Number of Views:186
Avg rating:3.0/5.0
Slides: 16
Provided by: DusankaZ5
Category:
Tags: egs | control | filter | kalman | system | talk

less

Transcript and Presenter's Notes

Title: EGS talk 2002


1
Critical issues of ensemble data assimilation in
application to GOES-R risk reduction program D.
Zupanski1, M. Zupanski1, M. DeMaria2, and L.
Grasso1 1CIRA/Colorado State University, Fort
Collins, CO 2NOAA/NESDIS Fort Collins, CO Ninth
Symposium on Integrated Observing and
Assimilation Systems for the Atmosphere, Oceans,
and Land Surface (IOAS-AOLS) 9-13 January
2005 San Diego, CA
Dusanka Zupanski, CIRA/CSU Zupanski_at_CIRA.colostat
e.edu
Research partially supported by NOAA Grant
NA17RJ1228
2
OUTLINE
  • Critical data assimilation issues related to
    GOES-R satellite mission
  • Ensemble based data assimilation methodology
    Maximum Likelihood Ensemble Filter
  • Experimental results
  • Conclusions and future work

Dusanka Zupanski, CIRA/CSU Zupanski_at_CIRA.colostat
e.edu
3
Critical data assimilation issues of GOES-R and
similar missions
  • Assimilate satellite observations with high
    special and temporal resolution
  • Employ state-of-the-art non-linear atmospheric
    models
  • (without neglecting model errors)
  • Provide optimal estimate of the atmospheric state
  • Calculate uncertainty of the optimal estimate
  • Determine amount of new information given by the
    observations

What is the value added of having new
observations (e.g., GOES-R, CloudSat, GPM) ?
Dusanka Zupanski, CIRA/CSU Zupanski_at_CIRA.colostat
e.edu
4
METHODOLOGY
  • Maximum Likelihood Ensemble Filter (MLEF)
  • (Zupanski 2005 Zupanski and Zupanski 2005)
  • Developed using ideas from
  • Variational data assimilation (3DVAR, 4DVAR)
  • Iterated Kalman Filters
  • Ensemble Transform Kalman Filter (ETKF, Bishop et
    al. 2001)
  • MLEF is designed to provide optimal estimates of
  • model state variables
  • empirical parameters
  • model error (bias)
  • MLEF also calculates uncertainties of all
    estimates (in terms of Pa and Pf)

Dusanka Zupanski, CIRA/CSU Zupanski_at_CIRA.colostat
e.edu
5
MLEF APPROACH
Minimize cost function J
Analysis error covariance
Forecast error covariance
- model state vector of dim Nstate gtgtNens
- non-linear forecast model
- information matrix of dim Nens ? Nens
Dusanka Zupanski, CIRA/CSU Zupanski_at_CIRA.colostat
e.edu
6
EXPERIMENTAL DESIGN
  • Hurricane Lili case
  • 35 1-h DA cycles 13UTC 1 Oct 2002 00 UTC 3 Oct
  • CSU-RAMS non-hydrostatic model
  • 30x20x21 grid points, 15 km grid distance (in the
    Gulf of Mexico)
  • Control variable u,v,w,theta,Exner, r_total
    (dim54000)
  • Model simulated observations with random noise
  • (7200 obs per DA cycle)
  • Nens50
  • Iterative minimization of J (1 iteration only)

Dusanka Zupanski, CIRA/CSU Zupanski_at_CIRA.colostat
e.edu
7
Experimental design (continued)
13 UTC
Dusanka Zupanski, CIRA/CSU Zupanski_at_CIRA.colostat
e.edu
8
Experimental design (continued)
  • Split cycle 33 into 24 sub-cycles
  • Calculate eigenvalues of (I-C) -1/2 in each
    sub-cycle (information content)

Information content of each group of observations
Dusanka Zupanski, CIRA/CSU Zupanski_at_CIRA.colostat
e.edu
9
RESULTS
Sub-cycles 1-4 u- obs groups
System is learning about the truth via updating
analysis error covariance.
Dusanka Zupanski, CIRA/CSU Zupanski_at_CIRA.colostat
e.edu
10
RESULTS
Sub-cycles 5-8 v- obs groups
Most information in sub-cycles 5 and 6.
Dusanka Zupanski, CIRA/CSU Zupanski_at_CIRA.colostat
e.edu
11
RESULTS
Sub-cycles 9-12 w- obs groups
Most information in sub-cycle 10.
Dusanka Zupanski, CIRA/CSU Zupanski_at_CIRA.colostat
e.edu
12
RESULTS
Sub-cycles 13-16 Exner- obs groups
Dusanka Zupanski, CIRA/CSU Zupanski_at_CIRA.colostat
e.edu
13
RESULTS
Sub-cycles 17-20 theta- obs groups
Dusanka Zupanski, CIRA/CSU Zupanski_at_CIRA.colostat
e.edu
14
RESULTS
Sub-cycles 21-24 r_total- obs groups
Sub-cycles with little information can be
excluded ? data selection.
Dusanka Zupanski, CIRA/CSU Zupanski_at_CIRA.colostat
e.edu
15
CONCLUSIONS
  • Ensemble based data assimilation methods, such as
    the MLEF, can be effectively used to quantify
    impact of each observation type.
  • The procedure is applicable to a forecast model
    of any complexity. Only eigenvalues of a small
    size matrix (Nens x Nens) need to be evaluated.
  • Data assimilation system has a capability to
    learn form observations.

Value added of having new observations (e.g.,
GOES-R, CloudSat, GPM) can be quantified applying
a similar procedure.
Dusanka Zupanski, CIRA/CSU Zupanski_at_CIRA.colostat
e.edu
Write a Comment
User Comments (0)
About PowerShow.com