Title: EGS talk 2002
1Critical issues of ensemble data assimilation in
application to GOES-R risk reduction program D.
Zupanski1, M. Zupanski1, M. DeMaria2, and L.
Grasso1 1CIRA/Colorado State University, Fort
Collins, CO 2NOAA/NESDIS Fort Collins, CO Ninth
Symposium on Integrated Observing and
Assimilation Systems for the Atmosphere, Oceans,
and Land Surface (IOAS-AOLS) 9-13 January
2005 San Diego, CA
Dusanka Zupanski, CIRA/CSU Zupanski_at_CIRA.colostat
e.edu
Research partially supported by NOAA Grant
NA17RJ1228
2OUTLINE
- Critical data assimilation issues related to
GOES-R satellite mission - Ensemble based data assimilation methodology
Maximum Likelihood Ensemble Filter - Experimental results
- Conclusions and future work
Dusanka Zupanski, CIRA/CSU Zupanski_at_CIRA.colostat
e.edu
3Critical data assimilation issues of GOES-R and
similar missions
- Assimilate satellite observations with high
special and temporal resolution - Employ state-of-the-art non-linear atmospheric
models - (without neglecting model errors)
- Provide optimal estimate of the atmospheric state
- Calculate uncertainty of the optimal estimate
- Determine amount of new information given by the
observations
What is the value added of having new
observations (e.g., GOES-R, CloudSat, GPM) ?
Dusanka Zupanski, CIRA/CSU Zupanski_at_CIRA.colostat
e.edu
4METHODOLOGY
- Maximum Likelihood Ensemble Filter (MLEF)
- (Zupanski 2005 Zupanski and Zupanski 2005)
- Developed using ideas from
- Variational data assimilation (3DVAR, 4DVAR)
- Iterated Kalman Filters
- Ensemble Transform Kalman Filter (ETKF, Bishop et
al. 2001) - MLEF is designed to provide optimal estimates of
- model state variables
- empirical parameters
- model error (bias)
- MLEF also calculates uncertainties of all
estimates (in terms of Pa and Pf)
Dusanka Zupanski, CIRA/CSU Zupanski_at_CIRA.colostat
e.edu
5MLEF APPROACH
Minimize cost function J
Analysis error covariance
Forecast error covariance
- model state vector of dim Nstate gtgtNens
- non-linear forecast model
- information matrix of dim Nens ? Nens
Dusanka Zupanski, CIRA/CSU Zupanski_at_CIRA.colostat
e.edu
6EXPERIMENTAL DESIGN
- Hurricane Lili case
- 35 1-h DA cycles 13UTC 1 Oct 2002 00 UTC 3 Oct
- CSU-RAMS non-hydrostatic model
- 30x20x21 grid points, 15 km grid distance (in the
Gulf of Mexico) - Control variable u,v,w,theta,Exner, r_total
(dim54000) - Model simulated observations with random noise
- (7200 obs per DA cycle)
- Nens50
- Iterative minimization of J (1 iteration only)
Dusanka Zupanski, CIRA/CSU Zupanski_at_CIRA.colostat
e.edu
7Experimental design (continued)
13 UTC
Dusanka Zupanski, CIRA/CSU Zupanski_at_CIRA.colostat
e.edu
8Experimental design (continued)
- Split cycle 33 into 24 sub-cycles
- Calculate eigenvalues of (I-C) -1/2 in each
sub-cycle (information content)
Information content of each group of observations
Dusanka Zupanski, CIRA/CSU Zupanski_at_CIRA.colostat
e.edu
9RESULTS
Sub-cycles 1-4 u- obs groups
System is learning about the truth via updating
analysis error covariance.
Dusanka Zupanski, CIRA/CSU Zupanski_at_CIRA.colostat
e.edu
10RESULTS
Sub-cycles 5-8 v- obs groups
Most information in sub-cycles 5 and 6.
Dusanka Zupanski, CIRA/CSU Zupanski_at_CIRA.colostat
e.edu
11RESULTS
Sub-cycles 9-12 w- obs groups
Most information in sub-cycle 10.
Dusanka Zupanski, CIRA/CSU Zupanski_at_CIRA.colostat
e.edu
12RESULTS
Sub-cycles 13-16 Exner- obs groups
Dusanka Zupanski, CIRA/CSU Zupanski_at_CIRA.colostat
e.edu
13RESULTS
Sub-cycles 17-20 theta- obs groups
Dusanka Zupanski, CIRA/CSU Zupanski_at_CIRA.colostat
e.edu
14RESULTS
Sub-cycles 21-24 r_total- obs groups
Sub-cycles with little information can be
excluded ? data selection.
Dusanka Zupanski, CIRA/CSU Zupanski_at_CIRA.colostat
e.edu
15CONCLUSIONS
- Ensemble based data assimilation methods, such as
the MLEF, can be effectively used to quantify
impact of each observation type. - The procedure is applicable to a forecast model
of any complexity. Only eigenvalues of a small
size matrix (Nens x Nens) need to be evaluated. - Data assimilation system has a capability to
learn form observations.
Value added of having new observations (e.g.,
GOES-R, CloudSat, GPM) can be quantified applying
a similar procedure.
Dusanka Zupanski, CIRA/CSU Zupanski_at_CIRA.colostat
e.edu