Title: Next Generation Fuel Cells:
1Next Generation Fuel Cells Anion Exchange
Membrane Fuel Cells
Presented By Jerry Gilligan Primary Source
Material Lu, S., Pan, J., Huang, A., Zhuang, L.,
and Lu, J. Alkaline polymer electrolyte fuel
cells completely free of noble metal catalysts.
Proc. Natl. Acad. Sci. 2008. 105, 52
20611-20614.
Image Quarternary Amine Polysulfone Lu et. al.
2008. Proc. Natl. Acad. Sci. 2008. 105, 52
20611-20614.
2The Transportation Problem
Hydrocarbon Fuel
O2
Internal Combustion Engine
Heat Work
28 of US energy consumption is in the
transportation sector, and 95 of that demand is
met by petroleum based hydrocarbon fuels.
CO2
Heat Loss
Source US EIA US EIA 2011. US Energy
Info. Admin. www.eia.gov/aer
Image Jaguar XK Apple Inc. 2011. Desktop
Images. www.apple.com
3Why Fuel Cells?
Hydrocarbon Fuel
Oxidizing Agent
Reducing Agent
O2
Internal Combustion Engine
Heat Work
Electrical Work
Fuel Cell
H2O
CO2
Heat Loss
Zaidi, J. et. al. 2010.
4Why Fuel Cells?
Hydrocarbon Fuel
Oxidizing Agent
Reducing Agent
O2
Internal Combustion Engine
Heat Work
Electrical Work
Fuel Cell
Inefficient CO2 Producer Hydrocarbon Consumer
More Efficient Benign Byproducts Abundant Fuel
H2O
CO2
Heat Loss
Zaidi, J. et. al. 2010.
5Efficiency Comparison
Hydrocarbon Fuel
Oxidizing Agent
Reducing Agent
O2
Internal Combustion Engine
Heat Work
Electrical Work
Fuel Cell
Energy Efficiency Theoretical 37 (Steel) Real
20 (Steel)
Energy Efficiency Theoretical 60-70 Real 50-60
H2O
CO2
Heat Loss
Zaidi, J. et. al. 2010.
6Inefficiency Sources
Hydrocarbon Fuel
Oxidizing Agent
Reducing Agent
O2
Resistance
Heat Loss
Internal Combustion Engine
Heat Work
Electrical Work
Fuel Cell
Energy Efficiency Theoretical 37 (Steel) Real
20 (Steel)
Energy Efficiency Theoretical 60-70 Real 50-60
H2O
CO2
Heat Loss
Zaidi, J. et. al. 2010.
7The Fuel Cell Vehicle
Refuels at Pumping Stations, Runs on Air and
Hydrogen, and Has Momentary Output Required for
Merging.
Image Fuel Cell Equinox Fray, D. 2011.
DoITPoMS Fuel Cells. University of
Cambridge. http//www.doitpoms.ac.uk/tlplib/fuel-c
ells/printall.php
8Types of Fuel Cells
SOFC Solid Oxide MCFC Molten Carbonate AFC
Alkaline/Anionic PAFC Phosphoric Acid PEMFC
Polymer Electrolyte Membrane
Image Fuels and Fuel Cells Fray, D. 2011.
DoITPoMS Fuel Cells. University of
Cambridge. http//www.doitpoms.ac.uk/tlplib/fuel-c
ells/printall.php
9Alkaline Fuel Cells
SOFC Solid Oxide MCFC Molten Carbonate AFC
Alkaline/Anionic PAFC Phosphoric Acid PEMFC
Polymer Electrolyte Membrane
Image Fuels and Fuel Cells Fray, D. 2011.
DoITPoMS Fuel Cells. University of
Cambridge. http//www.doitpoms.ac.uk/tlplib/fuel-c
ells/printall.php
10AFCs vs PEMFCs
AFC Alkaline Fuel Cell Requires no Pt/Noble
Metal Catalyst More Efficient Carbonate
Poisoning Problem PEMFC Proton
Exchange Membrane Fuel Cell Requires Pt
Catalyst Known Exchange Membranes with High
Conductivity
Image Fuels and Fuel Cells Fray, D. 2011.
DoITPoMS Fuel Cells. University of
Cambridge. http//www.doitpoms.ac.uk/tlplib/fuel-c
ells/printall.php
11AFCs Alkaline Reactions
Anode (ox) 2 H2 4 OH- ? 4 H2O 4e- Raney Ni
Catalyst Cathode (red) O2 2 H2O 4e- ? 4
OH- Ag Catalyst Overall O2 2H2 ? 2H2O
12AFC Applications
Current Uses Submarines Military
Applications NASAs Space Shuttle Future NASA
Craft The technology needs to overcome
significant hurdles to break in to the commercial
transportation marketplace.
Image Shuttle AMFC Cell Stack Fray, D. 2011.
DoITPoMS Fuel Cells. University of
Cambridge. http//www.doitpoms.ac.uk/tlplib/fuel-c
ells/printall.php
13AFCs vs PEMFCs
AFC Alkaline Fuel Cell Requires no Pt/Noble
Metal Catalyst Carbonate Poisoning
Problem PEMFC Proton Exchange Membrane Fuel
Cell Requires Pt Catalyst Known Exchange
Membranes with High Conductivity
Image Fuels and Fuel Cells Fray, D. 2011.
DoITPoMS Fuel Cells. University of
Cambridge. http//www.doitpoms.ac.uk/tlplib/fuel-c
ells/printall.php
14AFCs CO2 Poisoning Mechanism
Pure O2
From O2 (Cathode) O2 2 H2O 4e- ? 4
OH- CO2 OH- ? HCO3- Membrane Crossover
HCO3- lt OH- To Air (Anode) 2 H2
4 OH- ? 4 H2O 4e-
No CO2 Poisoning
15AFCs CO2 Poisoning Mechanism
Pure O2
From O2 (Cathode) O2 2 H2O 4e- ? 4
OH- CO2 OH- ? HCO3- Membrane Crossover
HCO3- lt OH- To Air (Anode) 2 H2
4 OH- ? 4 H2O 4e-
No CO2 Poisoning
16AFCs CO2 Poisoning Mechanism
Air
From Air (Cathode) O2 2 H2O 4e- ? 4
OH- CO2 OH- ? HCO3- Membrane Crossover
HCO3- gt OH- To Air (Anode) 2
HCO3- ? 2 OH- 2 CO2 H2 2 OH- ? 2e-
2H2O
CO2 Poisoning Ph Change, Reduced
Operation, Precipitation of Carbonates
17AFCs CO2 Poisoning Mechanism
Air
From Air (Cathode) O2 2 H2O 4e- ? 4
OH- CO2 OH- ? HCO3- Membrane Crossover
HCO3- gt OH- To Air (Anode) 2
HCO3- ? 2 OH- 2 CO2 H2 2 OH- ? 2e-
2H2O
CO2 Poisoning Ph Change, Reduced
Operation, Precipitation of Carbonates
18AFCs CO2 Poisoning Mechanism
Air
From Air (Cathode) O2 2 H2O 4e- ? 4
OH- CO2 OH- ? HCO3- Membrane Crossover
HCO3- gt OH- To Air (Anode) 2
HCO3- ? 2 OH- 2 CO2 H2 2 OH- ? 2e-
2H2O
CO2 Poisoning Ph Change, Reduced
Operation, Precipitation of Carbonates
19AFCs CO2 Poisoning Mechanism
Air
From Air (Cathode) O2 2 H2O 4e- ? 4
OH- CO2 OH- ? HCO3- Membrane Crossover
HCO3- gt OH- To Air (Anode) 2
HCO3- ? 2 OH- 2 CO2 H2 2 OH- ? 2e-
2H2O
CO2 Poisoning Ph Change, Reduced
Operation, Precipitation of Carbonates
20AFCs CO2 Poisoning Mechanism
Air
From Air (Cathode) O2 2 H2O 4e- ? 4
OH- CO2 OH- ? HCO3- Membrane Crossover
HCO3- gt OH- To Air (Anode) 2
HCO3- ? 2 OH- 2 CO2 H2 2 OH- ? 2e-
2H2O
CO2 Poisoning Ph Change, Reduced
Operation, Precipitation of Carbonates
21Anion Exchange Membrane Fuel Cell
AEMFC Does not require Pt Catalyst Reduced CO2
Poisoning Effect New Membranes!
Image APEFC Schematic Lu et. al. 2008. Proc.
Natl. Acad. Sci. 2008. 105, 52 20611-20614.
22QAPS Membrane
Quaternary Ammonium Polysulfone
Image QAPS Structure Lu et. al. 2008. Proc.
Natl. Acad. Sci. 2008. 105, 52 20611-20614.
23OH- Conduction
Quaternary Ammonium Polysulfone
Coordination of OH-
OH-
Image QAPS Structure Lu et. al. 2008. Proc.
Natl. Acad. Sci. 2008. 105, 52 20611-20614.
24Fuel Cell Performance
Membrane Conductivity 10-2 S/cm Power Density
50 mW/cm2 Temperature - 60C Operation Time
- gt100 hrs no Degradation
Image APEFC Schematic Lu et. al. 2008. Proc.
Natl. Acad. Sci. 2008. 105, 52 20611-20614.
25Fuel Cell Performance
Membrane Conductivity 10-2 S/cm Power Density
50 mW/cm2 Temperature - 60C Operation Time
- gt100 hrs no Degradation
Membrane Swelling
Image APEFC Schematic Lu et. al. 2008. Proc.
Natl. Acad. Sci. 2008. 105, 52 20611-20614.
26A Green Chemistry
- 12 Principles
- Waste Prevention
- Atom Efficiency
- Human and Environmental Safety
- Nontoxic
- Reduce Auxiliary Substances
- Minimize Energy Requirements
- Renewable Feedstock
- Reduce Derivatives
- Use Catalytic Reagents
- Low Environmental Lifetimes
- Analytical Monitoring of Hazardous Substances
- Minimize Potential for Danger
Image APEFC Schematic Lu et. al. 2008. Proc.
Natl. Acad. Sci. 2008. 105, 52 20611-20614.
27A Green Chemistry
- 12 Principles
- Waste Prevention
- Atom Efficiency
- Human and Environmental Safety
- Nontoxic
- Reduce Auxiliary Substances
- Minimize Energy Requirements
- Renewable Feedstock
- Reduce Derivatives
- Use Catalytic Reagents
- Low Environmental Lifetimes
- Analytical Monitoring of Hazardous Substances
- Minimize Potential for Danger
Image APEFC Schematic Lu et. al. 2008. Proc.
Natl. Acad. Sci. 2008. 105, 52 20611-20614.
28Next Generation Fuel Cells Anion Exchange
Membrane Fuel Cells
Works Cited 1. Fray, D. 2011. DoITPoMS Fuel
Cells. University of Cambridge
Press. http//www.doitpoms.ac.uk/tlplib/fuel-cells
/printall.php 2. Lu, S., Pan, J., Huang, A.,
Zhuang, L., and Lu, J 2008. Alkaline polymer
electrolyte fuel cells completely free of noble
metal catalysts. Proc. Natl. Acad. Sci. 105,
52 20611-20614. 3. Gasteiger, H. and Schmidt,
T. 2011 ECS PEFC Short Course. Boston,
ECS. 4. US EIA 2011. Annual Energy Review
2010. US Energy Info.Admin.
www.eia.gov/aer 5. Zaidi, J. et. al. 2010.
Polymer Membranes for Fuel Cells. Springer. New
York, NY.
Presented By Jerry Gilligan Primary Source
Material Lu, S., Pan, J., Huang, A., Zhuang, L.,
and Lu, J. Alkaline polymer electrolyte fuel
cells completely free of noble metal catalysts.
Proc. Natl. Acad. Sci. 2008. 105, 52
20611-20614.
Image Quarternary Amine Polysulfone Lu et. al.
2008. Proc. Natl. Acad. Sci. 2008. 105, 52
20611-20614.